ABSTRACT

FIELD PERFORMANCE ASSESSMENT OF PRESS-BRAKE-FORMED STEEL TUB GIRDER SUPERSTRUCTURES

The Short Span Steel Bridge Alliance (SSSBA) is a group of bridge and culvert industry leaders (including steel manufacturers, fabricators, service centers, coaters, researchers, and representatives of related associations and government organizations) who have joined together to provide educational information on the design and construction of short span steel bridges in installations up to 140 feet in length. One concept developed by the SSSBA, shallow press-brake-formed steel tub girders, has emerged as a particularly advantageous solution for using steel in the short span bridge market.

After several years of lab testing at West Virginia University, members of the SSSBA collaborated with County Engineer Brian Keierleber, P.E., to arrange the construction of the Amish Sawmill Bridge in Buchanan County, Iowa. The Amish Sawmill Bridge is the first bridge designed, constructed, and opened to traffic using the press-brake-formed steel tub girder concept. Upon the completion of this bridge, researchers from West Virginia University and Marshall University traveled to Iowa to perform a live load field test.

This report presents the results and assessment from experimental and analytical testing of the Amish Sawmill Bridge. Furthermore, an overview of both the experimental and analytical testing programs is provided. This report also compares live load distribution factors (LLDFs) calculated using AASHTO specifications to the LLDFs calculated from experimental and analytical testing results. Based on testing results, shallow press-brake-formed steel tub girders are both a practical and economic solution for using steel in the short span bridge market. The tub girders not only exhibit excellent performance in the field, but can also be utilized with various deck designs to create a modular unit that greatly reduces construction time. With Accelerated Bridge Construction (ABC) becoming more popular and necessary in the bridge construction industry, shallow press-brake-formed steel tub girders are a proven solution for short span bridge applications.
TABLE OF CONTENTS

ABSTRACT .. II

TABLE OF CONTENTS .. III

LIST OF TABLES ... VI

LIST OF FIGURES ... VII

CHAPTER 1: INTRODUCTION .. 1

 1.1 BACKGROUND / OVERVIEW ... 1
 1.2 PROJECT SCOPE & OBJECTIVES .. 1
 1.3 REPORT ORGANIZATION ... 2

CHAPTER 2: LITERATURE REVIEW .. 4

 2.1 INTRODUCTION ... 4
 2.2 PREVIOUS APPLICATIONS OF COLD-BENT STEEL GIRDERs IN BRIDGE APPLICATIONS 4
 2.2.1 Prefabricated Press-Formed Steel T-Box Girder Bridge System (Taly & Gangarao) .. 4
 2.2.2 Composite Girders with Cold-Formed Steel U-sections (Nakamura, 2002) 6
 2.2.3 Folded Plate Girders (Developed at the University of Nebraska) 6
 2.2.4 Texas Department of Transportation Rapid Economical Bridge Replacement 7
 2.3 PREVIOUS RESEARCH AT WVU ON PRESS-BRAKE-FORMED STEEL TUB GIRDERs 8
 2.3.1 Development and Feasibility Assessment (Michaelson, 2014) 9
 2.3.2 Evaluation of Non-Composite Tub Girder (Kelly, 2014) 12
 2.3.3 Evaluation of Modular Tub Girder with UHPC Joints (Kozhokin, 2016) 13
 2.4 FHWA’S INNOVATIVE BRIDGE RESEARCH AND DEPLOYMENT PROGRAM 15
 2.5 CURRENT AASHTO LRFD SPECIFICATIONS .. 16
 2.5.1 AASHTO Specifications for Box-Section Flexural Members (Tub Girder) 16
 2.5.1.1 Cross-Section Proportion Limits ... 16
 2.5.1.2 Constructability ... 18
 2.5.1.3 Service Limit State ... 21
 2.5.1.4 Fatigue and Fracture Limit State ... 22
 2.5.1.5 Strength Limit State ... 24
2.5.1.5.1 General Requirements.. 24
2.5.1.5.2 Flexural Capacity of Composite Sections.. 25
2.5.1.5.3 Flexural Capacity of Noncomposite Sections.. 28
2.5.1.5.4 Shear Capacity ... 33
2.5.1.6 AASHTO Equation References ... 36
2.5.2 AASHTO Live Load Distribution Factors (LLDFs) .. 38

CHAPTER 3: DESIGN AND CONSTRUCTION OF THE AMISH SAWMILL BRIDGE 41
3.1 INTRODUCTION ... 41
3.2 NEED FOR BRIDGE REPLACEMENT .. 41
3.3 SUMMARY OF DESIGN AND CONSTRUCTION ... 42
3.4 ACCELERATED BRIDGE CONSTRUCTION METHODS ... 45

CHAPTER 4: RESEARCH METHODS ... 47
4.1 INTRODUCTION .. 47
4.2 EXPERIMENTAL TESTING EQUIPMENT .. 47
 4.2.1 STS-WiFi Data Acquisition System .. 47
 4.2.2 BDI Strain Transducers ... 49
 4.2.3 Load Truck and Wheel Scales .. 50
4.3 FINITE ELEMENT MODELING .. 51
 4.3.1 Material Definitions ... 51
 4.3.2 Element Selection ... 52
 4.3.3 Mesh Discretization ... 52
 4.3.4 Boundary Conditions and Multiple-Point Constraints 53
 4.3.5 Application of Live Loading ... 53
4.4 DATA REDUCTION METHODS ... 55
 4.4.1 Computation of Midspan Bending Stresses ... 55
 4.4.2 Computation of Live Load Distribution Factors ... 56

CHAPTER 5: FIELD TESTING OF THE AMISH SAWMILL BRIDGE 61
5.1 INTRODUCTION .. 61
5.2 Live Load Field Test Assessment ... 61

CHAPTER 6: RESULTS AND COMPARISONS .. 65

6.1 Introduction .. 65

6.2 Comparison of Results .. 65

 6.2.1 Finite Element Model Results .. 65

 6.2.2 Live Load Field Test Results ... 68

 6.2.3 Comparison of Analytical vs. Experimental Results 70

6.3 Comparison of LLDFs to AASHTO Specifications 76

6.4 Conclusions ... 78

CHAPTER 7: SUMMARY AND CONCLUDING REMARKS 79

7.1 Project Summary and Conclusion ... 79

7.2 Recommendations for Continued Work .. 79

References ... 80

Appendix A: Results for All Truck Runs .. 83

Appendix B: Amish Sawmill Bridge Plans ... 110