ABSTRACT

FIELD PERFORMANCE AND RATING EVALUATION OF A MODULAR PRESS-BRAKE-FORMED STEEL TUB GIRDER WITH A STEEL SANDWICH PLATE DECK

The Short Span Steel Bridge Alliance (SSSBA) is a group of bridge and culvert industry leaders (including steel manufacturers, fabricators, service centers, coaters, researchers, and representatives of related associations and government organizations) who have joined together to provide educational information on the design and construction of short span steel bridges in installations up to 140 feet in length. The SSSBA technical working group has developed a shallow press-brake-formed tub girder, a trapezoidal cold bent girder, to address the demand in the short span steel bridge market for rapid infrastructure replacement solutions.

Following extensive experimental testing and design work at West Virginia University, members of the SSSBA in collaboration with Intelligent Engineering of Ottawa, Canada and County Engineer Douglas Davis, P.E., designed and constructed the Cannelville Road Bridge in Muskingum County, Ohio. The structure is composed of two modular, tub girder and sandwich plate steel (SPS®) deck units that were constructed offsite and erected using accelerated bridge construction (ABC) methods. The structure is the second press-brake-formed steel tub girder bridge to be erected and is the first structure with a composite SPS® deck system. One year after construction, the structure was live load field tested by researchers from West Virginia University and Marshall University to assess its performance.

This study presents the analysis and conclusions of experimental testing and analytical modeling of the Cannelville Road Bridge. The procedure for both experimental and analytical testing is outlined within the content of this study. The results of these analyses were used to generate bottom flange bending stress, live load distribution factors (LLDFs), and interior and exterior girder ratings. These values, experimental and analytical, were then compared with equivalent LLDFs and live load girder ratings computed referencing American Association of Highway and Transportation Officials (AASHTO) LRFD Specifications. The result of this testing evidences that current AASHTO LRFD Specifications for analyzing shallow press-brake-formed tub girders are conservative, with field performance exceeding the performance calculated. In addition to high performance, tub girders are practical in ABC applications and compatible with various deck designs as modular units. With a growing demand and need for rapid infrastructure replacement, shallow press-brake-formed tub girders have been proven to be an effective application in response to the growing industry demand.
Table of Contents

Abstract .. II

Table of Contents .. III

List of Tables .. VII

List of Figures ... VIII

Chapter 1: Introduction .. 1

1.1 Background / Overview ... 1

1.2 Project Scope & Objectives ... 2

1.3 Report Organization ... 2

Chapter 2: Literature Review .. 4

2.1 Introduction ... 4

2.2 Previous Applications of Cold-Bent Steel Girders ... 4

2.2.1 Prefabricated Press-Formed Steel T-Box Girder Bridge System (Taly & Gangarao, 1979) ... 4

2.2.2 Composite Girders with Cold Formed Steel U-sections (Nakamura, 2002) 6

2.2.3 Folded Plate Girders (Developed at the University of Nebraska) 7

2.2.4 Texas Department of Transportation Rapid Economical Bridge Replacement 8

2.3 Previous Research at WVU on Press-Brake-Formed Steel Tub Girders 9

2.3.1 Development and Feasibility Assessment of Shallow Press-Brake-Formed Steel Tub Girders for Short-Span Bridge Applications (Michaelson 2014) 9

2.3.2 Experimental Evaluation of Non-Composite Shallow Press-Brake-Formed Steel Tub Girders (Kelly, 2014) .. 13

2.3.3 Evaluation of Modular Press-Brake-Formed Tub Girders with UHPC Joints (Kozhokin, 2016) .. 15
2.3.4 Field Performance Assessment of Press-Brake-Formed Steel Tub Girder Superstructures (Gibbs, 2017) .. 17

2.3.5 Fatigue Performance of Uncoated and Galvanized Composite Press-Brake-Formed Tub Girders (Tennant, 2018) .. 18

2.4 Sandwich Plate Steel (SPS®) Deck Applications (Intelligent Engineering) 20

2.5 FHWA’s Accelerated Innovation Deployment Demonstration Program (AID Demo)... 21

2.6 Current AASHTO Specifications for Tub Girder Design and Application 22

 2.6.1 Multiple Presence Factor, Section 3.6.1.1.2 (AASHTO, 2017) 22

 2.6.2 Beam-Slab Bridges – Live Load Distribution Factors, Section 4.6.2.2 (AASHTO, 2017) .. 23

 2.6.3 Box-Section Flexural Members, Section 6.11 (AASHTO, 2017) 24

2.7 Current AASHTO Specifications for Superstructure Load Rating (MBE, 2018) 44

CHAPTER 3: DESIGN AND CONSTRUCTION OF THE CANNELVILLE ROAD BRIDGE....... 47

3.1 Introduction .. 47

3.2 Summary of Design and Construction .. 47

 3.2.1 Galvanic Coated Steel Press-Brake Tub Girder .. 48

 3.2.2 Sandwich Plate Steel Deck System ... 49

 3.2.3 Accelerated Bridge Construction Methods ... 49

CHAPTER 4: RESEARCH METHODS ... 51

4.1 Introduction .. 51

4.2 Experimental Testing Equipment .. 51

 4.2.1 BDI Strain Transducers .. 51

 4.2.2 STS-WiFi Data Acquisition System .. 53

 4.2.3 Load Truck and Wheel Scales ... 56

4.3 Finite Element Modeling ... 57
4.3.1 Material Definitions ... 57
4.3.2 Element Selection ... 58
4.3.3 Mesh Discretization ... 58
4.3.4 Multiple Point Constraints and Boundary Conditions 59
4.3.5 Application of Live Loading .. 60
4.4 Data Reduction Methods ... 61
4.4.1 Computation of Midspan Bending Stresses 62
4.4.2 Computation of Live Load Distribution Factors 63
4.4.3 Girder Load Rating ... 66

CHAPTER 5: FIELD TESTING OF THE CANNELVILLE ROAD BRIDGE 70
5.1 Introduction .. 70
5.2 Live Load Field Test Assessment .. 70
5.2.1 Structure Instrumentation ... 70
5.2.2 Live Load Path Delineation ... 75
5.2.3 Live Load Testing ... 77

CHAPTER 6: RESULTS AND ANALYSIS ... 79
6.1 Introduction .. 79
6.2 Comparison of results ... 79
6.2.1 Finite Element Modeling Results .. 79
6.2.2 Live Load Field Test Results ... 85
6.2.3 Comparison of Analytical and Experimental Results 89
6.3 Comparison of Live Load Distribution Factors with AASHTO Specifications 97
6.3.1 Live Load Distribution Factors .. 97
6.3.2 Live Load Girder Rating ... 99
6.4 Conclusions... 102

CHAPTER 7: CONCLUSIONS AND RECOMMENDATIONS .. 103

7.1 Project Summary and Conclusions ... 103

7.2 Recommendations for Continued Work ... 104

REFERENCES 105

APPENDIX A: RESULTS FOR ALL TRUCK RUNS.. 108

A.1 Average Midspan Bending Stress ... 109
 A.1.1 Live Load Field Test Results ... 109
 A.1.2 Finite Element Analysis Results ... 113
 A.1.3 Results Comparison: Live Load Field Test vs. Finite Element Analysis 117

A.2 Live Load Distribution Factors .. 131
 A.2.1 Live Load Field Test Results ... 131
 A.2.2 Finite Element Analysis Results ... 135
 A.2.3 Results Comparison: Live Load Field Test vs. Finite Element Analysis 139
 A.2.4 Results Comparison: Live Load Field Test, Finite Element Analysis, AASHTO

Calculations.. 146

APPENDIX B: LARS BRIDGE CONNECT LOAD RATING OUTPUT .. 150

APPENDIX C: CANNELVILLE ROAD BRIDGE DESIGN PLANS ... 168