

Development of eSPAN140 & Short-Span Steel Bridge Design Standards

Karl E. Barth, Ph.D.

West Virginia University, Wadsworth Department of Civil and Environmental Engineering

kebarth@mail.wvu.edu

NSBA / SSSBA Steel Bridge Essentials Webinar Series June 16, 2021

Outline of Today's Presentation

- Short Span Steel Bridge Design Standards
- eSPAN140 Example Project
- Questions & Answers

Short Span Steel Bridge Design Standards

Goals, Design Parameters, Weight Comparisons

Standards for Short Span Steel Bridge Designs

Goals:

- Economically competitive
- Expedite & economize the design process
- Simple repetitive details & member sizes.
- Bridge Design Parameters:
 - Span lengths: 40 feet to 140 feet (5-foot increments)
 - o Girder spacing: 6 feet, 7.5 feet, 9 feet and 10.5 feet
 - For each of these increments, the following were designed:
 - Steel girders
 - Shear stud & stiffener layouts
 - Welding and fabrication details
 - Elastomeric bearings
 - Concrete deck design

Primary value is use as an estimating tool!

- Now have the ability to produce a valid steel bridge design in minutes
- Obtain a cost estimate from a fabricator within a day
- Can directly compete with concrete alternate
- Design can then be further optimized

Standards for Short Span Steel Bridge Designs (cont'd)

- Four types of girder types:
 - Homogeneous plate girders (50 ksi steel)
 - Hybrid plate girders
 - 50 ksi top flanges and webs, 70 ksi bottom flanges
 - Lightest weight rolled beams (50 ksi steel)
 - Utilizing the lightest weight girder necessary
 - Limited depth rolled beams (50 ksi steel)
 - Designed to meet a target L/D of 25
- In addition, girders were designed to accommodate commonly stockpiled plate thicknesses and rolled beam sizes.

Standards for Short Span Steel Bridge Designs (cont'd)

- Bridges were designed according to AASHTO LRFD Specs:
 - Strength I, Service II, Fatigue, Constructability, L/800 Deflection
 - HL-93 Vehicular Live Loading
- Additional Design Loads:
 - SIP Unit Weight = 15 psf
 - Future Wearing Surface = 25 psf
 - Concrete barriers = 520 lb/ft
 - Misc. Steel Wt. Increase = 5%
 - o $f_c' = 4,000 \text{ psi}$
 - Concrete Unit Weight = 150 pcf
 - Steel Unit Weight = 490 pcf
 - O Concrete Haunch = 2 in
 - Constant Flange Width
 - Constant Web Height

Resulting Economical Standard Selections

 Based on weight comparisons of resulting designs, the following solutions are recommended for the span ranges shown:

eSPAN140 Example Project

Step-By-Step Process for Obtaining a Steel Solution

One-stop shop for customized steel bridge and culvert solutions!

- eSPAN140 provides:
 - Standard designs and details for short span steel crossings
 - Rolled Beam and Plate Girders
 - Buried Soil Steel Bridge Structures
 - Manufacturers' Steel Solutions (SSSBA Partners)
 - Coatings Solutions
 - Industry Contacts
 - Contacts can provide budget estimates and pricing information

Free and easy to use!!!

https://www.espan140.com/

Step 1.

Create a User's Account

Step 2.

Input Your Specific Project Details

Step 3.

View Your Instant Customized Solutions Books

eSPAN140 Example Project

Start new project:

My Projects

Welcome to eSPAN140. If this is your first time here, please click on "Start New Project" to begin.

If you have already created a project, please use the table below to view past projects, complete pe existing inputs you provided, please click on "Duplicate". This will allow you to create a new project I have multiple bridges to design and have only a few input values to change).

Start New Project

Step 1: Project Information

Step 2: Project Details (general dimensions)

• Step 2: Project Details (pedestrian access option)

Step 2: Project Details (remaining details)

Example output (sample plate girder elevation):

COMPOSITE PLATE GIRDER WITH PARTIALLY STIFFENED WEB - 4 GIRDERS AT 8' 10" GIRDER SPACING, HOMOGENEOUS

	SPAN (L) - ft	PLATE GIRDER SIZE									SHEAR CONNECTOR MAX. SPAC-		
		TOP FLANGE - in	BOTTOM FLANGE (F)		BOTTOM FLANGE (G)			DIAPHRAGM	SHEAR STIFFENERS		ING		INDIVIDUAL GIRDER
			PLATE - in	LENGTH - Ft	PLATE - in	LENGTH - Ft	WEB PLATE- in	SPACING (C) - ft		Y - ft. (SPACING)	D	E	WEIGHT
	85	14 x 3/4"	14 x 1"	17'	14 x 2"	51'	32 x 1/2"	21.25'	-	-	34 @ 6"	9"	14,144 lbs

Example output (typical fabrication details):

BEARING STIFFENER (N.T.S.)

BEARING STIFFENER TO FLANGE WELDING IS REQUIRED IF A DIAPHRAGM OR CROSS FRAME IS ATTACHED TO THE STIFFENER

Example output (typical fabrication details, cont'd):

Buried Bridge Solutions

Manufacturer Solutions

- Durability Solutions
 - Painted, galvanized, weathering

Questions & Answers

Thank You!

Karl E. Barth, Ph.D.

kebarth@mail.wvu.edu