Modern Corrosion Protection Systems
Part 2:
Detailing and Service Life Considerations

Jennifer McConnell, Ph.D.

Steel Bridge Essentials Webinar Series | June 18, 2021
Chem101 Review:
Why is Water Bad for Steel?

Fe \rightarrow Fe$^{2+}$ + 2e$^{-}$

\downarrow

2e$^{-}$ + $\frac{1}{2}$ O$_2$ + H$_2$O \rightarrow 2OH$^{-}$

Fe$^{2+}$ + 2OH$^{-}$ \rightarrow Fe(OH)$_2$

2Fe(OH)$_2$ \rightarrow Fe$_2$O$_3$H$_2$O “rust”
Chem201 Review:
Why is Chloride Bad for Steel?

Electrochemical reaction →
Dissolved electrolytes (Cl⁻) are a catalyst for the reaction

$\text{Fe} \rightarrow \text{Fe}^{2+} + 2e^-$

Fe^{2+} dissolution

moisture/wetting
Detailing 101 – Controlling Water

• Where does the water flow?
• Always ask if your detailing will be:
 – Free draining?
 – Or will it cause trapping or ponding?

Source: VDOT
Details of 101 – Controlling Water

• Where does the water flow?
• Always ask if your detailing will be:
 – Free draining?
 – Or will it cause trapping or ponding?

Source: VDOT
Detailing Overview

Details that trap moisture / debris
 – Reentrant corners
 – Cross-frame detailing
 – Inclined members w/out drainage path
 – Bolted connection hand holes

Exposed elements = Surfaces susceptible to ponding
 – Narrow overhangs
 – Discontinuous deck materials
Trapped Debris and Moisture at Reentrant Corners

- **Detail**: Reentrant corners
- **Example**: Drip bars
- **Recommendation**: Detail at angle
- **Why**: Avoid trapped moisture and debris

- **Detail**: Reentrant corners
- **Example**: Stiffeners
- **Recommendation**: Minimize; consider providing sufficient corner clips for drainage
- **Why**: Avoid trapped moisture and debris
Trapped Debris and Moisture on Cross-frames

Detail cross-frames “flange upwards” to reduce locations for trapped water and debris.

Provide tight fitting filler plate to eliminate gap for debris accumulation.

Source: New Zealand Weathering Steel Guide for Bridges
Trapped Moisture on Inclined Members

Provide and maintain drainage on inclined members to avoid trapped moisture and debris.
Trapped Moisture Inside of Bolted Connection Hand Holes

Connections should be designed to prevent accumulation of moisture and debris, which will lead to corrosion, while also allowing for future inspection.
Ponding and Capillary Corrosion Beneath Narrow Overhangs

Narrow overhangs contribute to ponding on exterior bottom flanges.

Capillary action causes corrosion on bottom of webs.
Positive Effects of Wide Overhang

Wider overhangs are recommended to provide more shelter to exterior girders.
Ponding Beneath Discontinuous Deck Materials

Discontinuous deck materials (e.g., timber and grid decks) should be avoided or have expectations of corrosion/maintenance due to constant moisture.
Detailing 101 – Controlling Water

Where does the water flow?
Always ask if your detailing will be:
– Free draining?
– Or will it cause trapping or ponding?
Leaking joints are a ubiquitous problem, causing localized corrosion because of regular exposure to water, often laden with chlorides.
Leaking Joints Data

- Findings from review of 70 inspection reports:
 - One-third of bridges reviewed had worse performance below deck joints than in the remainder of the structure
 - Different agencies have different results
 - This problem affects coastal bridges and those exposed to deicing agents, and perhaps others

<table>
<thead>
<tr>
<th>Agency</th>
<th>Number of Bridges Evaluated</th>
<th>Number of UWS Bridges with Worse Performance Below Joint</th>
</tr>
</thead>
<tbody>
<tr>
<td>Deicing 1</td>
<td>20</td>
<td>12</td>
</tr>
<tr>
<td>Deicing 2</td>
<td>21</td>
<td>6</td>
</tr>
<tr>
<td>Coastal 1</td>
<td>12</td>
<td>5</td>
</tr>
<tr>
<td>Coastal 2</td>
<td>17</td>
<td>0</td>
</tr>
<tr>
<td>Sum</td>
<td>70</td>
<td>23</td>
</tr>
</tbody>
</table>
Leaking Joints!
Partial Solution: Painted/Coated Girder Ends

Painting the ends of UWS girders is recommended to account for possible future leaking joints.

Notes:
Painted length = 1.5 * Girder depth is typical recommendation
Generally use color similar to UWS
Better Solution: Eliminate Joints Where Possible
Option 1: Integral (or Semi-Integral) Abutment

Integral abutments eliminate deck joints and associated corrosion problems.
The “Virginia Abutment” provides the same corrosion benefits as integral / semi-integral abutments in situations where these types of abutments cannot be used.
Better Solution: Eliminate Joints Where Possible

Option 3: Link Slabs

Link slabs can be used to eliminate joints along the length of the bridge.

The same concept can be used with approach slabs.
All components of rationally designed drainage systems need maintained.
Other Drainage Problems

Minimize use of scuppers.

Blocked scuppers pictured.
Other Considerations

- Site Selection (initial design)
- Aesthetics (initial design)
- Vegetation (initial design and maintenance)
Site Selection - UWS

Consider UWS “with caution” if:

• **Environment**
 1. Marine coastal areas.
 2. Frequent high rainfall, high humidity or persistent fog (condensing conditions).
 3. Industrial areas where concentrated chemical fumes may drift directly onto the structure.

• **Location**
 1. Grade separations in “tunnel-like” conditions.
 2. Low level water crossings.
 a. ≤ 10 ft. over stagnant, sheltered water.
 b. ≤ 8 ft. over moving water.

How far?
How much?
How high/wide? Salt use?
How often?
Aesthetics & Substructure Staining

Wrapping the substructure during construction of uncoated steel can minimize potential staining.

Additional Notes: Minimal expense

The bridge in this photo is ~20 years old. The columns were wrapped during construction and a sealer was applied after construction.
Aesthetics & Substructure Staining

Drip bars can be provided to divert water runoff from potentially staining substructure.

Caution: Do not use welded drip bars where fatigue stresses are critical!

Additional Notes: This recommended detail can be found in the AASHTO/NSBA Collaboration Document, G1.4 – Guidelines for Design Details. (aisc.org/nsba, page 104)
Vegetation traps moisture and should be prevented from growing in contact with structure.
SERVICE LIFE
Service Life Expectations

• Hundreds of thousands of steel bridges in US show steel bridges perform well and can easily provide a long service life.
• Especially when detailed properly!!
• How long?
 • Not easy to answer!!!
 • Long-term field data in realistic, representative environments is sparse
 • Numerous variables affect performance:
 • Environment (numerous environment parameters)
 • Maintenance practices
 • Workmanship
Targeted Framework for Results of Ongoing Research

<table>
<thead>
<tr>
<th>Corrosion Protection System</th>
<th>Longevity Estimate / Category</th>
<th>Lifecycle Cost Estimate</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Environment 1</td>
<td>Environment 2</td>
</tr>
<tr>
<td>Uncoated Grade 50W</td>
<td>X</td>
<td>Y</td>
</tr>
<tr>
<td>Uncoated Grade 50CR</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Galvanized, Reactive</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Metalized, 12 mils of 85/15, unsealed</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IOZ Primer Only</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OZ Paint</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Acknowledgments

• Graphics from Jeff Carlson
• Funding from:
 • West Virginia DOH
 • Federal Highway Administration
 • National Steel Bridge Alliance / AISC
THANK YOU