

Historical Life Cycle Costs of Steel & Concrete Girder Bridges

Dr. Michael Barker, PE Professor, University of Wyoming Director of Education, SSSBA Steel Bridge Essentials Summer Webinar Series June 23, 2021

SSSBA, Short Span Economic

Overview

The Short Span Steel Bridge Alliance (SSSBA)

Initial Costs

County & State Case Studies

Life Cycle Costs

Short Span Steel Bridge Alliance - Who We Are

A group of **bridge** and **buried soil structure** industry leaders who have joined together to provide educational information on the design and construction of short span steel bridges in installations up to 140 feet in length.

Rolled Beam & Plate

Buried Bridges

Truss

Press Brake & Folded Plate

SSSBA - Our Members

Initial Costs - Steel vs Concrete

Preconception that Concrete is Less Expensive than Steel for Typical Bridges

Many Times Steel is Not Even Considered
Owners Paying More Than They Could for Bridges
Unwarranted Lack of Competition Not Good

Case Studies from County & State Bridges

Case Study Bridges: Audrain County, MO

MO Bridge 411

Built 2012

- 4 Steel Girders
- 47.5 ft Span
- 24 ft Roadway Width
- 2 ft Structural Depth + Slab

County Crew Built Bridges

MO Bridge 336

Built 2012

- 6 Precast Hollowcore Slabs
- 50.5 ft Span
- 24 ft Roadway Width
- 2 ft Structural Depth + Slab

Side-by-Side Comparison of Total Cost of Bridge

Steel:

19.3% Total Cost Savings w/ Steel

Concrete:

Total Bridge Costs:

- Material = \$41,764
- Labor = \$24,125
- Equipment = \$21,521
- Guardrail = \$7,895
- Rock = \$8,302
- Engineering = \$8,246
- TOTAL = \$111,853 (\$97.48/ft²)

Total Bridge Costs:

- Material = \$67,450
- Labor = \$26,110
- Equipment = \$24,966
- Guardrail = \$6,603
- Rock = \$7,571
- <u>Engineering = \$21,335</u>
- TOTAL = \$154,035

(\$120.83/ft²)

Superstructure Only Cost Comparison

Steel:

- Superstructure Only:
 - Time = 10 days
 - Girders = \$21,463
 - Deck Panels = \$7999
 - Reinf. Steel = \$3135
 - Concrete = \$4180
 - Labor = \$5522
 - Equipment* = \$500
 - TOTAL = \$42,799

\$37.54 / ft²

Concrete:

- Superstructure Only:
 - Time = 13 days
 - Slab Girders = \$50,765
 - Deck Panels = \$0
 - Reinf. Steel = \$724
 - Concrete = \$965
 - Labor = \$4884
 - Equipment* = \$4000
 - TOTAL = \$61.338

\$50.61 / ft²

Material Considerations:

- Added cost to use galvanized steel ≈ **\$0.22/Ib** (includes est. 10% fabrication fee)
- Added cost to use weathering steel ≈ \$0.04/lb (already included in cost in example)
 Equipment Considerations:
- County crane (30-ton) used for steel; Larger rented crane required for concrete
 - Equivalent county crane cost is \$1520 (would result in steel cost of \$38.88 / ft²)

True Steel vs Concrete Cost Comparison

Steel:

25.8% Superstructure Cost Savings

Concrete:

 Superstructure total cost of \$37.54 per ft² Superstructure total cost of \$50.61 per ft²

Same bridge conditions:

- Structural Depth = 2 ft + Slab (No Difference in Approaches)
- Roadway Width = 24 ft
- Same Abutments for Both Can be Used (Steel Could Use Lighter)
- Same Guard Rail System
- Same Work Crew

Advantages of Steel Bridge

Lighter cranes required

Owner cranes can save costs

Advantages of Steel Bridge

Lighter abutments possible for steel bridges

Cast-in-place deck on prestressed concrete deck panels or corrugated metal decking

Simple and practical details

Elastomeric bearings and integral abutments

Use of weathering steel

Case Study Bridges: Additional Bridges in MO

Superstructure	Steel					Concrete					
Bridge Number	061	140	149	152	710	AVG	028	057	069	520	AVG
Year Built	2008	2008	2008	2009	2010	AVG	2009	2010	2011	2006	AVG
Span Length	50	50	40	62	64	53.2	36	36	38	40	37.5
Skew	0	0	0	30	35	13	0	15	20	30	16.25
Cost Summary											
- Labor	\$14,568	\$21,705	\$15,853	\$24,765	\$31,949	\$21,768	\$12,065	\$15,379	\$14,674	\$19,044	\$15,291
- Material	\$56,676	\$53,593	\$46,282	\$92,821	\$69,357	\$63,746	\$51,589	\$54,450	\$50,576	\$46,850	\$50,866
- Rock	\$6,170	\$6,216	\$3,694	\$8,235	\$6,501	\$6,163	\$5,135	\$7,549	\$5,378	\$3,621	\$5,421
- Equipment	\$7,487	\$12,026	\$7,017	\$19,579	\$15,266	\$12,275	\$5,568	\$10,952	\$11,093	\$14,742	\$10,589
- Guardrail	\$4,715	\$7,146	\$3,961	\$7,003	\$7,003	\$5,966	\$4,737	\$4,663	\$5,356	\$3,323	\$4,520
Construction Cost	\$89,616	\$100,686	\$76,807	\$152,403	\$130,076	\$109,918	\$79,094	\$92,993	\$87,077	\$87,580	\$86,686
CONST. COST PER FT ²	\$74.68	\$83.91	\$80.01	\$102.42	\$84.68	\$86.09	\$91.54	\$107.63	\$95.48	\$91.23	\$96.32

Two Near Identical MoDOT State Bridges Crossing US 63

Concrete P/S: 92 ft – 92 ft Route H (Columbia Airport) Built 2011

Costs for Concrete & Steel Bridges

Concrete P/S: 92 ft – 92 ft Route H (Columbia Airport) Built 2011 Steel Plate Girder: 98 ft – 98 ft Discovery Parkway (Columbia) Built 2007

Summary on Initial Costs

What About Life Cycle Costs?

As owners replace their bridge infrastructure, the question of Life Service and Life Cycle Costs routinely comes up between concrete and steel bridge options

The bridge industry does not have a good answer:

Both steel and concrete bridge advocates claim an advantage Anecdotal information is not convincing

Historical life Cycle Costs of Steel & Concrete Bridges

Examine Historical Life Service (Performance and Maintenance) and Agency Life Cycle Costs (True Agency Costs for a Bridge) of Steel and Concrete Bridges in Pennsylvania

Report on www.ShortSpanSteelBridges.org

Thank You to PennDOT professionals for their participation. Thanks to SMDI, NSBA and AGA for supporting the work.

Life Cycle Cost Data Collection

Start with a Comprehensive Inventory of Bridges

Initial Costs & Date Built

Maintenance Costs and Date Performed

End of Service Date – End of Life Model

PennDOT Database Development

Criteria to Develop LCC Bridge Database

Modern typical bridge structures
Precast I-Beam, Box Adjacent, and Box Spread bridges
Steel Rolled Shape and Welded Plate Girder bridges

Bridges built between 1960 and 2010

Bridges with complete and accurate department maintenance records

Consider any maintenance cost that is equal to or greater than \$0.25/ft²

Bridges with known initial costs

Bridges with complete and accurate external contractor maintenance and rehabilitation

PennDOT Database Development

All Bridges in PennDOT Inventory = 25,403 Number of Type Bridges in Inventory = 8,466 Number of Types Built 1960-2010 = 6,587

Bridges that Meet All Criteria

Bridge Type	Number of Bridges that Meet All criteria	Percentage of 1960 – 2010 database
Steel I Beam	82	14.9%
Steel I Girder	230	22.6%
P/S Box - Adjacent	400	27.8%
P/S Box - Spread	581	26.5%
P/S I Beam	412	29.8%
Total	1705	25.9%

PennDOT Database Bridge Life Model

Bridge Life Model uses Average Deterioration Rates of Total PennDOT Inventory (2014 Condition I

 $Deterioration Rate = \frac{(2014 \ Condition Rating) - 9}{2014 - (Year \ Built)}$

Super Structure Condition Rating Used Assume Bridge Replacement at Condition Rating = 3

$$Remaining \, Life = \frac{3 - (2014 \, Condition \, Rating)}{(Average \, Deterioration \, Rate)}$$

 $Bridge\ Life = 2014 - (Year\ Built) + Remaining\ Life$

Bridge Type	Number of Bridges 1960 - 2010	Deterioration Rate (Condition Rating Loss/Year)	
Steel I Beam	550	-0.07114	
Steel I Girder	1017	-0.08144	
P/S Box - Adjacent	1440	-0.08125	
P/S Box - Spread	2196	-0.07988	
P/S I Beam	1384	-0.08383	

Agency Life Cycle Costs - An Example

Precast Spread Box-Beam Bridge

BrKey: 30570

Bridge Type: P/S, Box Beam (Spread)

County: Schuykill

Location: 0.75 mi. N of Exit 107(33)

Year Built: 1969

Spans: 3

Length: 176 ft Deck Area: 7621 ft²

Super Cond Rating: 5

Average Precast Box Beam – Spread bridge deterioration rate = -0.07988

Remaining Life =
$$\frac{(3-5)}{-0.07988} = 25 \text{ years}$$

$$Bridge\ Life = 2014 + 25 - 1969 = 70\ years$$

Costs for the Life Cycle Cost Analysis

Example Bridge Costs

Initial Cost: Year = 1969 Cost = $$141475 ($18.56/ft^2)$ Work: Bridge Construction

External Contract: Year = 1988 Cost = $$58401 ($7.66/ft^2)$ Work: Latex Overlay

Maintenance 1: Year = 2009 Cost = $$1891 ($0.25/ft^2)$ Work: Repair Concrete Deck

Maintenance 2: Year = 2013 Cost = $$2510 ($0.33/ft^2)$ Work: Repair Concrete Deck

ENR Construction Cost Indices

$$2014 \ Dollars = \frac{CCI \ 2014}{CCI \ 19XX} 19XX \ Dollars$$

Transform the costs to constant 2014 dollars using Construction Cost

Initial Cost: Year = 0 Cost = $$18.56/\text{ft}^2(9806/1269) = $143.45/\text{ft}^2$

External Contract: Year = 19 $Cost = $7.66/ft^2(9806/4519) = $16.63/ft^2$

Maintenance 1: Year = 40 Cost = $$0.25/\text{ft}^2(9806/8570)$ = $$0.28/\text{ft}^2$

Maintenance 2: Year = 44 Cost = $$0.33/ft^2(9806/9547)$ = $$0.34/ft^2$

Life Cycle Costs

Example Bridge Life Cycle

OMB Circular A-94 2011 30 yr Discount Rate = 2.3%

Present Value Cost for 1 Cycle

$$PVC = \$143.45 + \$16.63(1.023)^{-19} + \$0.28(1.023)^{-40} + \$0.34(1.023)^{-44} = \$154.49/ft^2$$

Perpetual Present Value Cost = Capitalized Cost

$$PPVC = \$154.49 \left[\frac{(1+0.023)^{70}}{(1+0.023)^{70}-1} \right] = 1.256(\$154.49) = \$193.97/ft^2$$

With Capitalized Costs, Can Compare Bridges Directly

Typical Bridge Life Cycle Costs

Additional Bridges Removed Based on PPVC/Capitalized Costs

To Consider "Typical" Bridges, Keep Bridges with PPVC within +/- 1 Standard Deviation of Overall Average

Bridges in the Life Cycle Cost Analyses

Bridge Type	Number	Number	
	of Bridges in	of Bridges in LCC	
	Table 11 Database	Study Database	
Steel I Beam	82	54	
Steel I Girder	230	144	
P/S Box - Adjacent	400	282	
P/S Box - Spread	581	397	
P/S I Beam	412	309	
	1705	1186	

Life Cycle Costs Analysis Database

The Steel Plate Girder Bridge Data Base

Life Cycle Cost Report

Analysis and Variables Examined in Report

Bridge Life

PPVC/Capitalized Costs

Number of Spans

Bridge Length

PVC Future Costs

Department Maintenance

External Contracts

For the entire report:

www.ShortSpanSteelBridges.org

Additional LCC report on Galvanizing:

www.ShortSpanSteelBridges.org

For Steel Bridges

Curved vs. Straight

Fracture-Critical

Protection (Painted, Weathering, Galvanized)

Results for Bridge Life

Bridge Type	Number of Bridges in Final LCC Database	Average Year Built	Average Bridge Life (years)
Steel I Beam	82	1981	81.3
Steel I Girder	230	1977	79.2
P/S Box - Adjacent	400	1985	74.0
P/S Box - Spread	581	1984	79.9
P/S I Beam	412	1984	74.5

Cumulative Density Function on Bridge Life

Capitalized Costs (Perpetual Present Value) - All Bridges

	# Bridges	PPVC	Initial Cost	Future Cost	Avg Length	Avg # Spans	Avg Year Built	Avg Life
Steel I Beam	54	\$232.78	\$194.78	\$0.42	166	2.19	1980	82
Steel I Girder	144	\$273.71	\$226.10	\$0.21	406	4.07	1976	80
P/S Box - Adjacent	282	\$278.30	\$223.74	\$0.96	89	1.31	1987	74
P/S Box - Spread	397	\$256.11	\$210.65	\$2.06	89	1.56	1986	79
P/S I Beam	309	\$217.50	\$174.10	\$0.20	212	2.43	1985	73

All are "similar" with None "Way Out" of Balance

Cumulative Density Function – Capitalized Costs – All Bridges

Capitalized Costs (Perpetual Present Value) - Short Span

Perpetual Present Value Cost - Length<140 ft

Short Length Bridges for Short Span Steel Bridge Alliance

	# Bridges	PPVC	Initial Cost	Future Cost	Avg Length	Avg # Spans	Avg Year Built	Avg Life
Steel I Beam	27	\$266.24	\$222.08	\$0.16	84	1.26	1978	82
Steel I Girder	18	\$311.26	\$257.19	\$0.29	119	1.00	1977	81
P/S Box - Adjacent	240	\$292.38	\$235.03	\$0.95	69	1.09	1987	74
P/S Box - Spread	325	\$272.20	\$225.14	\$2.16	64	1.23	1986	81
P/S I Beam	98	\$281.64	\$231.20	\$0.05	104	1.08	1987	77

Steel Rolled Precast Box Spread

Which Type of Bridge is Best?

Precast Box Adjacent

Steel Plate Girder

Steel Rolled Beam

Precast I Beam

Precast Box Spread

Which Type of Bridge is Best?

All are "similar" with None "Way Out" of Balance

Overall Weighted Average PPVC = \$252.40/ft² - Capitalized Costs

Bridge Types within 14% of Weighted Average

Standard Deviation Range \$48.02/ft² - \$65.60/ft² [COV ≈ 20% - 25%]

Any One Type of Bridge May Be Most Economical for a Given Bridge Project

Probability Density Function Capitalized Costs

There is No One Type of Bridge That Clearly Beats the Others

Conclusions

Typical Concrete and Steel Bridges are Competitive on Initial Cost, Future Costs, Life Cycle Costs and Bridge Life

For any Given Bridge Project, Concrete or Steel Bridge Types May Be the Most Economical

Preconception that Concrete is Always Less Expensive is a Misconception

Owners Should Consider Both Steel and Concrete Alternatives for Individual Bridge Projects

5 Ways to Keep Learning About Steel Bridges

1. Subscribe to the **Weekly Newsletter**

2. Find a Supplier

3. Design a Bridge in 5-**Minutes**

4. Receive Free **Project Assistance**

www.ShortSpanSteelBridges.org

Questions? Dan Snyder, Director, SSSBA, dsnyder@steel.org, (301) 367-6179

Website: ShortSpanSteelBridges.org

Twitter: @ShortSpanSteel

Facebook: Short Span Steel Bridge Alliance