

## Innovative Bridge Designs – Buried Bridges

Steel Bridge Essentials – 6 Part Summer Webinar Series

June 25, 2021

Joel Hahm, P.E.
Senior Engineer
Contech Engineered Solutions
joel.hahm@contechES.com
Chair of TRB AKB70-1



## **Buried Bridge Design Innovations - Outline**

- Design standards in AASHTO LRFD Bridge Design Specifications Section 12.8.9
  - Buried Bridges are not proprietary all info needed for design, manufacturing, & construction is available in ASTM & AASHTO standards.
  - Design involves Finite Element Analysis with inputs for foundation & site soils, backfill, structure shape & material properties, and loading conditions.
  - Design innovation happens on almost every project Most innovations are driven by developing custom geometries to meet project specific clearance requirements & site limitations and optimizing to best fit site & loading conditions.
  - Many project innovations occur after design when working with contractors to address construction challenges
- Innovations to accommodate modular construction
  - Pre-assembly of large sections of structure, setting on foundation, and connecting sections to each other
  - Limited space for material staging & equipment
  - Limited access to inside of structure
  - Time limitations for road / track closure
  - Size of modules is driven by lifting equipment capacity & site constraints

## M5 Conveyor Cover South Jordan, Utah

- Cover for active conveyor to allow for access to new mining area
- High cost to disruption or halting of conveyor operation
- Design for 4 million lbs mining shovel
- Built in 20', 25', and 40' sections (two different structure geometries) and transported ~1 mile to project location
- Modules connected from outside using a rolled angle flange connection
- Modular section weights ~24,000 30,000 lbs

23' span x 11.5' rise single radius arch & 32.2' span x 19.9' rise Dual Radius Arch (~1200 ft combined length)







|           | ~40'-0* (TYP.) |                  |           |           |           |           |           |           |            |           |           |           |           |           |             |           | 4x4x1/4   | ROLLED / | ANGLE    | SETS -             | TYP.      |           |           |           |           |           |           |               |           |
|-----------|----------------|------------------|-----------|-----------|-----------|-----------|-----------|-----------|------------|-----------|-----------|-----------|-----------|-----------|-------------|-----------|-----------|----------|----------|--------------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|---------------|-----------|
| 8S – MK1  | 9S – MK2       | 8S – MK1         | 9S – MK2  | 8S – MK1  | 9S – MK2  | 8S – MK1  | 9S – MK2  | 8S – MK1  | 9S – MK2   | 8S – MK1  | 9S – MK2  | 8S – MK1  | 9S – MK2  | 8S – MK1  | 9S – MK2 (9 | 8S – MK1  | 9S – MK2  |          |          | 8S – MK1           | 9S – MK2  | 8S – MK1  | 9S – MK2  | 8S – MK1  | 9S – MK2  | 8S - MK1  | 9S – MK2  | 8S – MK1      | 9S – MK2  |
| . \@      | 11 П           |                  |           | 022E      | ll ll     |           | 1 Г       |           | 1          |           | 1 [       | 1222      | 1 1       |           | 1 1         | ②<br>     | II I      |          |          | <i>'4444</i>       | Π Ι       |           | II .      | %%%%      | П         |           | П         | 3233          | TII       |
|           |                |                  |           | )         |           |           |           |           |            |           |           |           |           |           | 3           | <u></u>   |           |          |          |                    |           |           |           |           |           |           |           |               |           |
| 10S - WK3 | 10S - MK3      | 10S - MK3        | 10S - MK3 | 10S - MK3 | 10S - MK3 | 10S - MK3 | 10S - MK3 | 10S - MK3 | 10S - IMK3 | 10S - MK3 ( | 10S - MK3 | 10S - MK3 | <u>}</u> | <u> </u> | 10S - MK3          | 10S - MK3 | 10S - MK3 | 10S - MK3 | 10S - MK3 | 10S - MK3 | 10S - MK3 | 10S - MK3 | 10S - MK3     | 10S - MK3 |
| . 01      | <u> </u>       | ֓<br>֓<br>֓<br>֪ | 10        | 0         | ٠ .       | ρ.        | 9 .       | P .       | 0 .        | ٠ .       | 2         | 2         | 9         | 2         | . 1         | •<br>•    |           |          |          |                    | . 0       | . °       |           |           |           |           |           | °<br> <br>  ' |           |
| 69<br>69  |                |                  |           |           |           |           |           | 0.4.6.A   |            |           |           |           |           |           | 2           | <b>4</b>  |           |          |          | <i>0.000.</i><br>: |           |           |           |           |           |           |           | <i>32.0</i> 3 |           |
| MK2       | ¥.             | MK2              | . MK1     | MK2       | . MK1     | MK2       | - MK1     | MK2       | . MK1      | MK2       | . MK1     | MK2       | . MK1     | MK2       | . MK1       | MK2       | . MK1     |          |          | MK2                | . MK1     | MK2       | . MK1     | MK2       | . MK1     | MK2       | . MK1     | MK2           | MK1       |
| - 86      | 8              | - S6             | - S8      | - S6      | - 88      | - S6      | - 88      | - S6      | - 88       | - S6      | - S8      | - S6      | - 88      | - S6      | θ 88 -      | - s       | . 88      | 5        |          | - S6               | - S8      | - S6      | - 88      | - 88      | - S8      | - 88      | - S8      | - 86          | SS .      |
|           |                |                  |           |           |           |           |           |           |            |           |           | 411.50    | NGS @ 2'- | e" - 10   | 27'-6"      |           |           |          |          |                    |           |           |           |           |           |           |           |               |           |

| 1          |          |          |          |          |          |          |          |          |          |          |          |          |          |           | L 4x4x1/4 | ROLLED A | ANGLE    | SETS - 1 | IYP.         |   |                      |          |          |          |          |          |          |          |          |          |
|------------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|-----------|-----------|----------|----------|----------|--------------|---|----------------------|----------|----------|----------|----------|----------|----------|----------|----------|----------|
| . A        | ,        |          |          |          |          |          |          |          |          |          |          |          | _        |           | _         | 5        |          |          |              |   |                      |          |          |          |          |          |          |          |          |          |
| 8S - MK1   | М        | 9S – MK2 | 8S - MK1 | 9S – MK2 | 8S - MK1 | 9S - MK2 | 8S - MK1 | 9S - MK2 | 8S - MK1 | 9S – MK2 | 8S - MK1 | 9S - MK2 | 8S - MK1 | 9S - MK2  | 8S - MK1  | 9S - MK2 | 85 - MK1 | 9S - MI  |              |   |                      | 9S - MK2 | 8S - MK1 | 9S - MK2 |
| . \@       | <b>3</b> |          |          |          |          |          |          |          |          | 1 П      |          | 1 [      |          | 1 [       |           | 1 1      | 2        | Π 1      |              |   | <i>'16'11'11'1</i>   |          |          |          |          |          |          | П        | %%%:     | TII .    |
| 0          |          |          |          |          |          |          |          |          |          |          |          |          |          |           |           |          |          |          |              |   |                      |          |          |          |          |          |          |          |          |          |
| . WK3      |          | - MK3     | - MK3     | - MK3    | ©        | - MK3    | <del>\</del> | \ | - MK3                | - MK3    | - MK3    | - MK3    | - MK3    | - MK3    | - MK3    | - MK3    | - MK3    | - MK3    |
| sot        |          |          | 105      | 105      | 105      | 105      | 10S      | 10S      | S01      | 10S      | 10S      | 10S      | 105      | 10S       | 10S       | 105      | 105      | 108      |              |   | 105                  | 108      | S01      | S01      | 100      | S01      | 105      | 10S      | 50       | S01      |
| @###<br>@4 |          |          |          |          | 6282     |          |          |          | 2222     |          |          |          |          |           |           | 2        | <b>4</b> |          |              |   | <i>1611/161</i><br>: |          |          |          |          |          |          |          |          |          |
| MK2        |          | - MK1    | - MK2    | - MK1    | – MK2    | - MK1    | - MK2    | - MK1    | - MK2    | – MK1    | - MK2    | - MK1    | - MK2    | - MK1     | - MK2     | - MK1    | - MK2    | - MK1    |              |   | - MK2                | – MK1    | - MK2    | - MK1    |
|            |          | 88       | . 88     | 88       | · S6     | 88       | · S6     | 88       | · S6     | S8       | se .     | 88       | S6       | S8        | S6        | 88       | S<br>S   | . 88     | 5            |   | . S                  | . S8     | . S6     | . S8     | . se     | . S8     | . 88     | SS       | . S6     | . 88     |
|            |          |          | • • • •  |          |          | 0 0 0    |          |          |          | 0 0 0    |          |          | —411 RII | NGS @ 2'- | -6" = 1,0 | 27'-6"-  | <u> </u> |          |              |   |                      |          |          |          |          |          |          |          |          |          |











## Captain William Henry Moore Bridge Skagway, Alaska

- Replacement for suspension bridge unable to support mining equipment loads
- Crossing deep ravine ~100' from bottom of structure to top of road
- 18° skewed ends needed because of site constraints
- Backfilled with roller compacted concrete
- Assembled on foundation in 3 pieces



























