Competitive Short-Span Steel Bridges

John Hastings, PE
Bridge Steel Specialist, Southeast
Competitive Short-Span Steel Bridges

Assessment of New Construction Market Pricing for Steel and Concrete Bridges

• Comprehensive national study of bridge cost
• Prepared by HDR
 • Michael DiGregorio, PE, MBA Professional Associate
• Conclusions
 • Steel bridges are cost-competitive
 • Rolled steel bridges are most cost-competitive
 • States exhibit a bias toward bridge types (steel vs concrete)

“These conclusions come as a surprise to the authors, who assumed that concrete bridge would be more cost-competitive than steel bridges.”

Michael DiGregorio
Competitive Short-Span Steel Bridges

Project Objectives

- Determine the in-place cost of structural steel and precast concrete bridges
- Break these cost down
- Compare similar structures
- Compare national and regional cost
Competitive Short-Span Steel Bridges

Project Scope of Work

• Structural Steel and Concrete bridges
• New and replacement structures for vehicular traffic
• Typical girder/beam/slab type bridges (i.e. no truss, arch, cable stay, suspension, etc.)
• Bridge let by State Department of Transportation agencies
• Projects constructed between 2011 and 2019
• Design-Bid-Build delivery approach
Competitive Short-Span Steel Bridges

Project Approach

• Selected 12 states
• Gathered information
 • Reviewed bridge plans
 • Reviewed Historic bid tabs
Competitive Short-Span Steel Bridges

Project Approach

<table>
<thead>
<tr>
<th>Region</th>
<th>State</th>
<th>Steel</th>
<th>Concrete</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>11</td>
<td>14 15 16 17 18 19 Tot</td>
<td>11 14 15 16 17 18 19 Tot</td>
</tr>
<tr>
<td>West</td>
<td>Oregon</td>
<td>2 1 1 1 4</td>
<td>6 7 8 2 23</td>
<td>27</td>
</tr>
<tr>
<td></td>
<td>Texas</td>
<td>1 3 1 1 6</td>
<td>63 29 92</td>
<td>98</td>
</tr>
<tr>
<td></td>
<td>Washington</td>
<td>2 2 1 9 8 10 4 3 5 40</td>
<td>42</td>
<td></td>
</tr>
<tr>
<td>Central</td>
<td>Arkansas</td>
<td>38 9 6 53</td>
<td></td>
<td>53</td>
</tr>
<tr>
<td></td>
<td>Illinois</td>
<td></td>
<td>23 8 31 29 4 33</td>
<td>64</td>
</tr>
<tr>
<td></td>
<td>Minnesota</td>
<td>2 2</td>
<td>42 8</td>
<td>50</td>
</tr>
<tr>
<td></td>
<td>Kentucky</td>
<td>1 2 3</td>
<td>1 11 21 14 47</td>
<td>50</td>
</tr>
<tr>
<td></td>
<td>North Carolina</td>
<td>12 5 17</td>
<td>25 29</td>
<td>54</td>
</tr>
<tr>
<td></td>
<td>South Carolina</td>
<td>1 1 2</td>
<td>6 13 3 9 6 4 41</td>
<td>43</td>
</tr>
<tr>
<td></td>
<td>Michigan</td>
<td>3 2 3 4 3 15</td>
<td>3 21 9 16 7 56</td>
<td>71</td>
</tr>
<tr>
<td></td>
<td>New York</td>
<td>16 14 8 38</td>
<td>1 5 2</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>Pennsylvania</td>
<td>6 1 7</td>
<td>30 27 33</td>
<td>90</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>2 2 4 58 52 49 13 180 1 21 31 74 134 210 63 534</td>
<td>714</td>
<td></td>
</tr>
</tbody>
</table>
Competitive Short-Span Steel Bridges

Project Approach Comparable Cost

• Typical items included:
 • Mobilization
 • Structural Excavation
 • Foundations
 • Beams
 • Superstructure/Deck
Competitive Short-Span Steel Bridges

Project Approach Comparable Cost

• Typical items not included:
 • Overlay
 • Bridge rail
 • Approach Slab
 • Aesthetics
Competitive Short-Span Steel Bridges

Project Approach Cost Adjustments

• Escalation
 • Necessary to escalate project cost from past years to consistent base year for comparison (Q2 2019)

• Location Adjustment
 • Necessary to adjust project costs from state specific to national average for comparison
Competitive Short-Span Steel Bridges

Establish Key Parameters

- Bridge Type
- Span Length Classification
- Skew Angle and Horizontal Curvature
- Phasing
- Coatings
- Grade of material
Competitive Short-Span Steel Bridges

Establish Key Parameters

- Bridge Type and Subtype
 - Structural Steel
 - Steel plate girder (SPG)
 - Rolled steel beam (RSB)
 - Concrete
 - Precast, prestressed concrete I-beam (PPCI)
 - Precast, prestressed concrete box beam (PPCB)
 - Precast, prestressed concrete slab beams (PPCS)
Competitive Short-Span Steel Bridges

Establish Key Parameters

- Span Length Classification
 - Captured the length of each span for every bridge
 - Developed a histogram of maximum span length
 - Span ranges from span distribution
 - <100’
 - 100’ to 150’
 - 150’ to 200’
 - > 200’
Competitive Short-Span Steel Bridges

How to Report Costs

- Unit Price Data Set
Competitive Short-Span Steel Bridges

How to Report Costs

• Unit Price Data Set
Competitive Short-Span Steel Bridges

How to Report Costs

- Unit Price Data Set
Competitive Short-Span Steel Bridges

How to Report Costs

• Unit Price Data Set
Competitive Short-Span Steel Bridges

How to Report Costs

- Unit Price Data Set
Competitive Short-Span Steel Bridges

National Bridge Cost by Beam Subtype ($/SF)

(#) indicates number of bridges for each beam type

- Cost in $/SF for different beam types, and gray bars show overall range of bridge costs for each beam type
- Blue shaded portion highlights 50th percentile range of bridge costs
- Significant overlap with all concrete beam types

Lots of overlap in 50th percentiles

Tightest range

- Steel Plate Girder (108)
- Steel Rolled Beam (72)
- Concrete I-Beam (381)
- Concrete Box Beam (105)
- Concrete Slab (48)
Competitive Short-Span Steel Bridges

National Bridge Cost by Beam Subtype ($/SF)

(#) indicates number of bridges for each beam type

- Minimum
- 25th Percentile
- 75th Percentile
- Maximum

Less Than 100 ft.
- Steel Plate Girder (19)
- Steel Rolled Beam (66)
- Concrete I-Beam (203)
- Concrete Box Beam (104)
- Concrete Slab (48)

- Steel plate girders and rolled beams are competitive with concrete

Lots of overlap in 50th percentiles

Tightest range
Competitive Short-Span Steel Bridges

National Bridge Cost by Beam Subtype ($/SF)

(#) indicates number of bridges for each beam type

- Minimum
- 25th Percentile
- 75th Percentile
- Maximum

100 - 150 ft.

- Steel Plate Girder (49)
- Steel Rolled Beam (6)
- Concrete I-Beam (154)
- Concrete Box Beam (1)
- Concrete Slab

- Significant overlap between all types suggests all beam types are competitive within this span range
- Rolled steel beams aren’t as economical above 100’

Lots of overlap in 50th percentiles
Competitive Short-Span Steel Bridges

More Information

Bridge Steel Specialists

- Western Market
 - Jason Lloyd
- Central Market
 - Tony Peterson
- Southeast Market
 - John Hastings
- Northeast Market
 - Vin Bartucca
- Steel Solutions Center
 - Devin Altman

Leadership Team

- Director of Market Development
 - Jeff Carlson
- Director of Market Development
 - Brandon Chavel
- Chief Bridge Engineer
 - Chris Garrell

www.aisc.org/nsba/
Competitive Short-Span Steel Bridges

Considerations for Steel Girder Efficiency

- Utilize balance spans when possible
 - Continuous span standards available at https://www.aisc.org/nsba/design-resources/
- Eliminate or reduce the number of piers to optimize span arrangements
 - Span-to-Weight Curves available at https://www.aisc.org/nsba/design-resources/
- Utilize wider girder spacings to reduce fabrication and erection cost.
- Balance loads in interior and exterior girders
- Optimize web depth (Simon has a feature for this, eSPAN 140)
- Simplify details