Sustainability of Rural Steel and Concrete Bridges United for Infrastructure, May 17, 2022 vehicles

NO FISHING FROM BRIDGE

Michael Barker, PE Sarah Bridges, Ione Chandler and Peyton Smith University of Wyoming

Objectives

 Life Cycle Sustainability Assessment (Cradle to Grave) of Two Nearly Identical, Functionally Equivalent, Two-Lane Bridges from Whitman County, WA Steel – Seltice-Warner

Built 2020, 35 ft – 8 in, Modular Steel, 7 Rolled Beams, Corrugated Gravel Deck, County Crew Built Concrete – Thornton Depot

Built 2019, 34 ft – 0 in, Precast Prestressed Beams, 8 Beams, Concrete Deck, County Crew Built

 Develop Procedures for Owners or Society that Considers Sustainability Benefits for the Design of Bridges

Full Report on www.ShortSpanSteelBridges.org

Bridges – Life Cycle

Steel Seltice-Warner

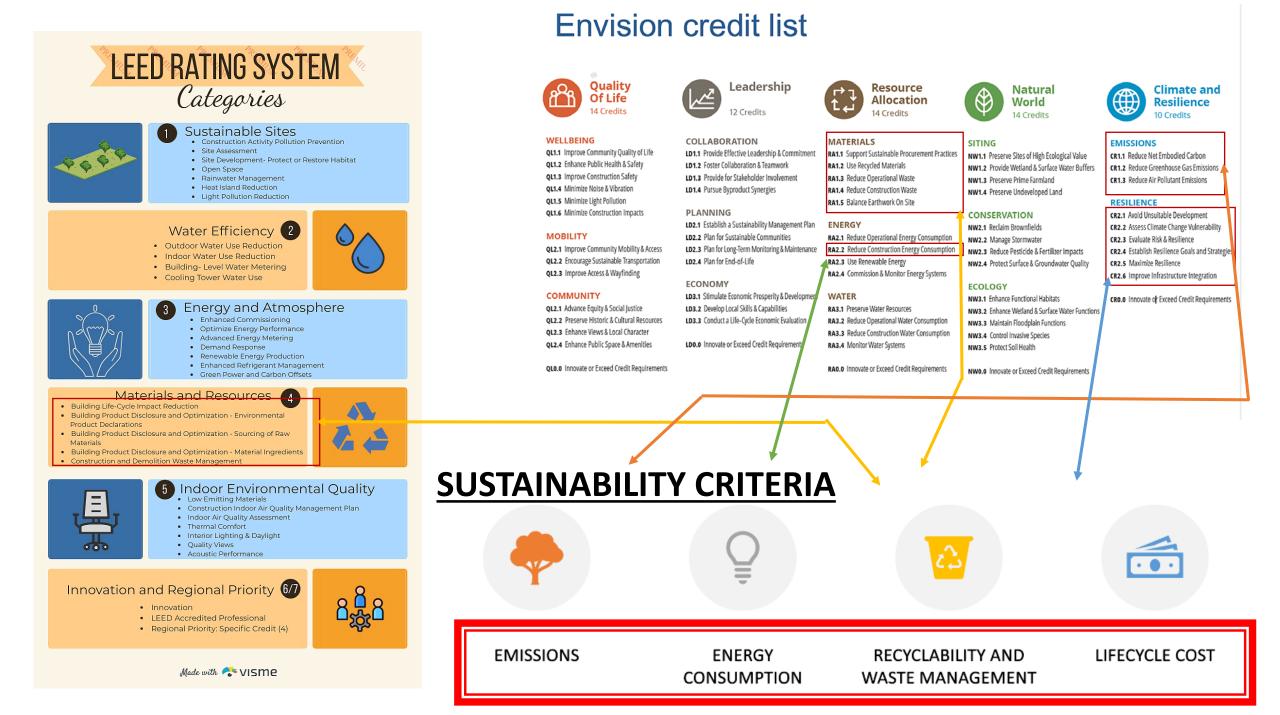
Superstructure Construction Maintenance Demolition

Concrete Thornton Depot Superstructure Construction Maintenance Demolition

Superstructure Only

Bridge Lifes 75 yrs

Prefabricated Bridges and Installation Equipment and Costs


Maintenance Assumed Identical for Both Bridges (none for 25 yrs, yearly for 50 yrs)

Demolition Equipment and Costs Different for the Two Bridges

Process

- Life Cycle Sustainability Assessment
 Establish Criteria and Benchmarks
 GHG, Energy Consumption, Recycling & Wastestream Metrics, Life Cycle Costs
 Life Cycle Bridge Results
- Procedure that Considers Sustainability Benefits for the Design of Bridges Monetizing Sustainability Benefits
 Equivalent Cost Decision Making

Superstructure Materials and Fabrication

Construction Equipment

Maintenance Equipment

Demolition Equipment

Emissions and Energy Consumption Benchmarks

Use of recycled materials

Recovery of recyclable materials during demolition

Material to the landfill

Recyclability and Waste Management Benchmarks

Lifecycle Cost Benchmarks

Life Expectancy of the Project

Initial Cost

Maintenance Cost

Demolition and Salvage/Landfill Cost

Present Value Life Cycle Cost

Emissions and Energy Consumption Metrics

- Fabricated Material and Component Emissions & Energy Consumption Metrics from Environmental Product Declarations (EPDs).
- Equipment Emissions & Energy Consumption Metrics from Analysis

Material	Description	Emissions (kgCO2e/ton)	Energy Consumption (MJ/ton)		
Concrete	Precast Concrete Component	310.3	3268		
	Grout	614.2	4545		
Steel	Hot Rolled Steel Shapes	1106.8	16840		
	Plates	1569.4	20804		
	Steel Tubes	2168.2	25611		
	Steel Deck	2150.0	27208		
	Guardrail*	2150.0	27208		
Other	#7 Gravel (1/2" x #4)	1.41	30.8		

Construction Equipment	Description	Emissions (kgCO2e/hr)	Energy Consumption (MJ/hr)
Equipment	Light Equipment	50.8	724.5
	Heavy Equipment	71.1	1014.3

Superstructure Emissions and Energy Consumption

Steel Seltice-Warner

Bridge Component:	Weight (tons):	Emissions (kgCO2e/ton)	Energy (MJ/ton)	Length Factor	Emissions (kgCO2e)	Energy (MJ)
Stringers	9.337	1,106.8	16,840.1	0.953	9,851	149,892
Diaphragm	0.916	1,106.8	16,840.1	1.000	1,013	15,418
Tubes	0.308	2,168.2	25,610.8	0.953	637	7,523
Center Splice Plate	0.152	1,569.4	20,803.6	1.000	239	3,172
Side Dam	0.244	1,569.4	20,803.6	0.953	365	4,838
End Angle	0.274	1,106.8	16,840.1	1.000	304	4,621
Bridge Deck	4.699	2,150.0	27,208.3	0.953	9,631	121,880
Guardrail	0.360	2,150.0	27,208.3	0.953	737	9,328
Bridge Rail Post	0.578	1,106.8	16,840.1	1.000	639	9,725
Post Block	0.096	1,106.8	16,840.1	1.000	107	1,621
Gravel	22.655	1.4	30.8	0.953	30	665
Steel Weight	16.96			Sub-Total Superstructure	23,554	328,683
Reinf Concrete Weight						

Concrete Thornton Depot

Bridge Component:	Weight (tons):	Emissions (kgCO2e/ton)	Energy (MJ/ton)	Length Factor	Emissions (kgCO2e)	Energy (MJ)
Precast Elements	103.840	310.3	3,267.7	1.000	32,217	339,316
Misc. Steel Detail Items	0.338	2,150.0	27,208.3	1.000	727	9,196
Grout	0.999	614.2	4,545.0	1.000	614	4,540
Guardrail	0.360	2,150.0	27,208.3	1.000	773	9,785
Bridge Rail Post	0.387	1,106.8	16,840.1	1.000	428	6,517
Steel Weight	1.08			Sub-Total Superstructure	34,759	369,355
Reinf Concrete Weight	103.84					

Equipment Emissions and Energy Consumption

Steel Seltice-Warner

Construction Equipment	Hours on Site		Emissions (kgCO	2e/hr)	Ener	gy (MJ/hr)	Usage Factor		Emissions (kgCO2e)		Energy (MJ)	
Heavy Equipment		130		71.1		1,014.3		0.30	277	71	39558	
Light Equipment		105		50.8		724.5		0.30	159	99	22822	
							Sub-Total Constru	ction	4,370	0	62,379	
Maintenance	lours on Site/yr	Emis	ssions (kgCO2e/hr)	Energy (MJ/hr)	Usage Factor		EoL Yrs of Maint	Emissions (kgCO2	e)	Energy (MJ)	
Heavy Equipment	3		71.1		1,014.3		1.00	50	10	0658	15214	
Light Equipment	3		50.8		724.5		1.00	50	-	7613	10867	
						Sub-Total Ma	intenance		18,	,270	260,820	
Demolition	Hours on Site		Emissions (kgCO	2e/hr)	Ener	gy (MJ/hr)	Usage Factor		Emissions (kgCO2e)		Energy (MJ)	
Heavy Equipment		20		71.1		1,014.3		0.50	7:	11	1014	
Light Equipment		15		50.8		724.5		0.50	38	381		
Sub-Total Yearly Demolition 1091 155											15,577	
Concret	e Thor	nt	on Dep	ot								
	Hours on Site	nt 			Energ	zy (MJ/hr)			Emissions (kgCO2e)		Energy (MJ)	
Construction Equipment	-		on Dep Emissions (kgCO2		Energ	gy (MJ/hr) 1,014.3	Usage Factor	0.30	Emissions (kgCO2e)	28	Energy (MJ) 3894	
Construction Equipment Heavy Equipment Light Equipment	-	nt 128 134		2e/hr)	Energ			0.30		-	38949	
Construction Equipment Heavy Equipment	-	128		2e/hr) 71.1	Ener	1,014.3 724.5		0.30	272	10	38949 29125	
Construction Equipment Heavy Equipment Light Equipment	-	128 134		2e/hr) 71.1		1,014.3 724.5	Usage Factor Sub-Total Construct	0.30	272 204	10 8	3894 2912	
Construction Equipment Heavy Equipment Light Equipment	Hours on Site	128 134	Emissions (kgCO2	2e/hr) 71.1 50.8		1,014.3 724.5	Usage Factor Sub-Total Construct	0.30 ction	272 204 4,768 Emissions (kgCO2	10 8	3894 2912 68,074 Energy (MJ)	
Construction Equipment Heavy Equipment Light Equipment Maintenance	Hours on Site	128 134	Emissions (kgCO2	2e/hr) 71.1 50.8	MJ/hr)	1,014.3 724.5 Usage Factor	Usage Factor Sub-Total Construct 1.00	0.30 Ction EoL Yrs of Maint	272 204 4,768 Emissions (kgCO2	10 8 2e) 10658 7613	38949 29129 68,074 Energy (MJ) 15214 108679	
Construction Equipment Heavy Equipment Light Equipment Maintenance H Heavy Equipment	Hours on Site	128 134	Emissions (kgCO2 sions (kgCO2e/hr) 71.1	2e/hr) 71.1 50.8	MJ/hr) 1,014.3	1,014.3 724.5	Usage Factor Sub-Total Construct 1.00	0.30 Ction EoL Yrs of Maint 50	272 204 4,768 Emissions (kgCO2	10 8 2e) 10658	38949 29129 68,074 Energy (MJ) 15214	
Construction Equipment Heavy Equipment Light Equipment Maintenance H Heavy Equipment	Hours on Site	128 134	Emissions (kgCO2 sions (kgCO2e/hr) 71.1	2e/hr) 71.1 50.8 Energy (I	MJ/hr) 1,014.3 724.5	1,014.3 724.5 Usage Factor Sub-Total Ma	Usage Factor Sub-Total Construct 1.00	0.30 Ction EoL Yrs of Maint 50	272 204 4,768 Emissions (kgCO2	10 8 2e) 10658 7613	3894 2912 68,074 Energy (MJ) 15214 10867	
Construction Equipment Heavy Equipment Light Equipment Maintenance H Heavy Equipment Light Equipment	Hours on Site	128 134	Emissions (kgCO2 sions (kgCO2e/hr) 71.1 50.8	2e/hr) 71.1 50.8 Energy (I	MJ/hr) 1,014.3 724.5	1,014.3 724.5 Usage Factor Sub-Total Ma	Usage Factor Sub-Total Construct 1.00 1.00 intenance	0.30 Ction EoL Yrs of Maint 50	272 204 4,768 Emissions (kgCO2	2e) 10658 7613 3,270	38949 29129 68,074 Energy (MJ) 15214 10867 260,820	
Construction Equipment Heavy Equipment Light Equipment Maintenance H Heavy Equipment Light Equipment D Demolition	Hours on Site	128 134 Emis	Emissions (kgCO2 sions (kgCO2e/hr) 71.1 50.8	2e/hr) 71.1 50.8 Energy (I	MJ/hr) 1,014.3 724.5	1,014.3 724.5 Usage Factor Sub-Total Ma	Usage Factor Sub-Total Construct 1.00 1.00 intenance	0.30 ction EoL Yrs of Maint 50 50	272 204 4,768 Emissions (kgCO2 1 18 Emissions (kgCO2e)	2e) 10658 7613 3,270	3894 2912 68,074 Energy (MJ) 15214 10867 260,820 Energy (MJ)	

Life Cycle Emissions and Energy Consumption

Emissions

	Emissions (kgCO2e)											
	Superstructure	Construction	Construction Maintenance Demolit									
Steel	23554	23554 4370 18270		1091	47284							
Concrete	34759	4768 18270		1929	59726							
	Steel 68%	Less	Same	Less	79%							

Energy Consumption

	Energy (MJ)											
	Superstructure	Construction	Construction Maintenance Demoli									
Steel	328683	62379	260820	15577	667459							
Concrete	369355	68074	260820	27531	725780							
	Steel 89%	Less	Same	Less	92%							

RESULTS – Steel Bridge Has Sustainability Advantages

Recycling, Surplus and Landfill

• Recycling Surplus or Cost

98% Steel Recycled at Surplus of \$100/ton

80% of Concrete Recycled at Cost of \$4.10/ton

• Landfill Cost \$75/ton

Bridge	Steel Weight (tons)	% Steel Recycled	Concrete Weight	% Concrete Recycled	Steel Recycled (tons)	Concrete Recycled (tons)	Steel to Landfill (tons)	Concrete to Landfill (tons)
Steel	16.96	98%	-	80.0%	16.62	0.00	0.34	0
Concrete	1.08	98%	103.84	80.0%	1.06	83.07	0.02	20.768

Seltice-Warner Salvage Payback and Landfill Costs						
Tons of Steel Recycled	16.62					
Tons of Steel to Landfill	0.34					
Recycling Payback	\$1,662.49					
Landill Cost	\$25.45					

Thornton Depot Salvage Payback and Landfill Costs						
Tons of Steel Recycled	1.06					
Tons of Steel to Landfill	0.02					
Tons of Concrete Recycled	83.07					
Tons of Concrete to Landfill	20.77					
Recycling Cost	\$234.30					
Landill Cost	\$1,559.23					

Present Value of Costs (OMB Discount Rate 1.70%)

Steel Seltice-Warner

Bridge Component:	Costs	Length Factor	Adjusted Costs	;	Present Value Cost	Demolition	Costs	Length Factor	Adjusted Costs	Present Value Cost
Prefabricated Bridge	\$ 60,134.00	0.953	\$ 57,323.9	5\$	57,323.95	Labor	\$ 5,000.00	1.000	\$ 5,000.00	\$ 1,412.21
Labor	\$ 8,750.00	1.000	\$ 8,750.0	0\$	8,750.00	Equipment	\$ 1,110.00	1.000	\$ 1,110.00	\$ 313.51
Equipment	\$ 8,255.00	1.000	\$ 8,255.0	0\$	8,255.00	Salvage	\$ (1,662.49)	0.953	\$ (1,584.81)	\$ (447.61)
Materials	\$ 3,491.00	0.953	\$ 3,327.8	7 \$	3,327.87	Landfill	\$ 25.45	0.953	\$ 24.26	\$ 24.26
		Sub-Total Superstructure	\$ 77,656.8	1\$	77,656.81			Sub-Total Demolition	\$ 4,549.45	\$ 1,302.36

Maintenance	Costs / yr		Length Factor	EoL Yrs Maint	Life (yrs)		Adjusted Costs/ yr	Present Value Cost
Labor	\$	375.00	1.00	50.00	75		\$ 375.00	8243
Equipment	\$	375.00	1.00	50.00	75		\$ 375.00	8243
					Sub-Total Maintena	nce	\$ 750.00	\$ 16,485.34

Concrete Thornton Depot

Bridge Component:	Costs	Length Factor	Adjuste	ed Costs	Present Value Cost	Demolition	Costs	Length Factor	Adjusted Costs	Present Value Cost
Prefabricated Bridge	\$ 73,569.00	1.000	\$ 7	73,569.00	\$ 73,569.00	Labor	\$ 7,500.00	1.000	\$ 7,500.00	\$ 2,118.31
Labor	\$ 11,800.00	1.000	\$1	11,800.00	\$ 11,800.00	Equipment	\$ 2,040.00	1.000	\$ 2,040.00	\$ 576.18
Equipment	\$ 10,444.00	1.000	\$ 1	10,444.00	\$ 10,444.00	Salvage	\$ 234.30	1.000	\$ 234.30	\$ 66.18
Materials	\$ 1,032.00	1.000	\$	1,032.00	\$ 1,032.00	Landfill	\$ 1,559.23	1.000	\$ 1,559.23	\$ 1,559.23
		Sub-Total Superstructure	\$ 9	96,845.00	\$ 96,845.00			Sub-Total Demolition	\$ 11,333.53	\$ 4,319.90

Maintenance	Costs / yr		Length Factor	EoL Yrs Maint	Life (yrs)		Adjusted Costs/ yr	Present Value Cost	
Labor	\$	375.00	1.00	50.00	75	\$	375.00	\$ 8,242.6	
Equipment	\$	375.00	1.00	50.00	75	\$	375.00	\$ 8,242.6	
					Sub-Total Maintenance	e \$	750.00	\$ 16,485.3	

Life Cycle Costs

Life Cycle Cost											
uperstructure	· · · · · ·	Tot Initial		PV Maint		PV Demo		Total L	CC		
\$ 57	7,324	\$	77,657	\$	16,485	\$	1,302	\$	95,445		
\$ 73	3,569	\$	96,845	\$	16,485	\$	4,320	\$	117,650		
	\$ 57	uperstructure \$ 57,324 \$ 73,569	\$ 57,324 \$	uperstructure Tot Initial \$ 57,324 \$ 77,657	uperstructure Tot Initial PV Maint \$ 57,324 \$ 77,657 \$	uperstructure Tot Initial PV Maint \$ 57,324 \$ 77,657 \$ 16,485	uperstructure Tot Initial PV Maint PV Demo \$ 57,324 \$ 77,657 \$ 16,485 \$	uperstructure Tot Initial PV Maint PV Demo \$ 57,324 \$ 77,657 \$ 16,485 \$ 1,302	uperstructure Tot Initial PV Maint PV Demo Total L \$ 57,324 \$ 77,657 \$ 16,485 \$ 1,302 \$		

Steel 78%

80%

Same

81%

Less

RESULTS – Steel Bridge Has Lower Initial & Life Cycle Costs

Considering Sustainability in Design Decisions Monetizing Sustainability Benefits

• Sustainable design is predicated on the idea that society is willing to pay extra for reducing harmful effects on the environment.

For these Two Bridges, This Decision is Trivial Steel has Higher Sustainability Benefits AND Steel has Lower Costs No Decision Required But, What if the Steel Bridge Cost More than the Concrete Bridge?

- Considering sustainability in the design of a bridge entails answering the question, "what additional cost would society or the owner be willing to pay to increase sustainability benefits?"
- Suppose Society is Willing to Pay:

\$0.20 per kg of CO₂e Reduced

- \$0.04 per MJ of Energy Reduced
- \$50 per ton of Landfill Reduced

Considering Sustainability in Design Decisions Monetizing Sustainability Benefits

• Then, an Equivalent Cost can be Determined for Any Number of Design Alternatives. Basis of Analysis on the Lowest Cost Alternative.

Equivalent Cost = [Initial or Life Cycle Cost]

- [Reduced kg CO2e]*(\$0.20/kg CO2e)
- [Reduced MJ]*(\$0.04/MJ)
- [Reduced Landfill tons]*(\$50/ton)
- The Lowest Equivalent Cost Alternative is Chosen Considering the Sustainability Benefits and Cost of the Alternative.
- This is Actually an Incremental Benefit-Cost Analysis "Hidden" in Terms Owners and Society Understand (Similar to Initial or Life Cycle Costs)

Considering Sustainability in Design Decisions

-24220

-99													
Bridge	Initial or Initial or Life Cycle Total					Reduction				Cost Benefit	Total Cost	Equivalent Cost	
	Life Cycle Cost kg CO2e		kg CO2e	MJ Consumed Landfill (tons)		kg CO2e	2e MJ Consumed Landfill (tons)		kg CO2e	MJ Consumed	Landfill (tons)	Benefit	
Alt 1	\$	100,000	59726	725780	21	0	0	0	\$0	\$0	\$0	\$0	\$100,000
Alt 2	\$	105,000	70000	720000	10	-10274	5780	11	-\$2,055	\$231	\$540	-\$1,284	\$106,284
Alt 3	\$	105,000	47284	667459	1	12442	58321	20	\$2,488	\$2,333	\$1,000	\$5,821	\$99,179
Alt 4	\$	107,000	45000	664000	10	14726	61780	11	\$2,945	\$2,471	\$540	\$5,956	\$101,044

Equivalent Cost = [Initial or Life Cycle Cost] - [Reduced kg CO2e]*(\$0.20/kg CO2e) - [Reduced MJ]*(\$0.04/MJ) - [Reduced Landfill tons]*(\$50/ton)

• Alt 3 has lowest Equivalent Cost at \$99179 (Initial Cost – Total Cost Benefit)

15726

• Alt 1 is Lowest Cost with a Basis Total Cost Benefit of Zero

1

107,000

44000

750000

Alt 5

\$

 Alt 4 has highest Sustainability Benefits with \$5956 more benefits than Alt 1, but Costs \$7000 more than Alt 1 (Incremental B/C < 1) – the Sustainability Benefits are not Worth the Extra Cost

20

\$3,145

-\$969

\$1,000

\$3,176

\$103,824

- Alt 3 has \$5821 more Sustainability Benefits than Alt 1 and costs only \$5000 more (Incremental B/C = 1.16)

 the Sustainability Benefits Outweigh the Additional Costs
- Alts 2 & 4 additional sustainability benefits (if any) do not outweigh the additional costs
- Alt 3 costs \$5000 more, but has a Societal Accepted Rate of Return of \$5821
- This is Incremental Benefit Cost Analysis with Monetized Sustainability Benefits
- Owner or Society Determines the Acceptable Cost for Sustainability Benefits
- Owners Understand Equivalent Cost: Compare Similar to Initial Costs or Life Cycle Costs

Summary & Conclusions

Results of Steel Seltice-Warner and Concrete Thornton Depot Bridges

• For the Installed Bridge

Steel had 30% less Emissions Steel had 11% less Energy Consumed

• For the Life Cycle

Steel had 21% less Emissions (31300 equivalent vehicle miles) Steel had 8% less Energy Consumed (0.6 homes for a year)

• Costs

Steel had 22% less Prefabricated Bridge Costs Steel had 20% less Installed Initial Costs Steel had 19% less Life Cycle Costs

Summary & Conclusions

Equivalent Cost Procedure

- Similar to Initial Cost or Life Cycle Cost Decision Making
- Owner or Society Driven with Acceptable Sustainability Benefit Costs
- Flexible in Analysis Details
 - Structure Only or Structure and Equipment
 - Initial Costs or Life Cycle Costs
 - Fabricated Bridge, Installed Bridge, or Life Cycle Bridge with or without Maintenance and Demolition
 - Any Combination of Emissions, Energy Consumed and Landfill Use (Others Could be Added)
 - Consider Total Energy or Only Non-Renewable Energy

Equivalent Cost = [Initial or Life Cycle Cost]

- [Reduced kg CO2e]*(Acceptable \$/kg CO2e)
- [Reduced MJ]*(Acceptable \$/MJ)
- [Reduced Landfill tons]*(Acceptable \$/ton)

Acknowledgements

American Iron & Steel Institute

Mark Thimons, VP Sustainability Dan Snyder, Director, SSSBA

Whitman County, WA Mark Storey, County Engineer Dean Cornelison, Assistant County Engineer

University of Wyoming, Civil & Architectural Engineering and Construction Management Tony Denzer, Professor and Head William Bellamy, Professor of Practice

The opinions and conclusions in this report are not necessarily those of the American Iron & Steel Institute or the Short Span Steel Bridge Alliance