

Simple Span Bridge Design Using eSPAN140

Gregory K. Michaelson, Ph.D., P.E.

Marshall University, College of Engineering and Computer Sciences <u>michaelson@marshall.edu</u>

SSSBA Webinar Series – June 8, 2022

Designing Cost-Effective and Resilient Bridges

www.shortspansteelbridges.org

Outline of Today's Presentation

- Introduction
- Development of Standard Designs
- eSPAN140 Example Project
- Case Studies & Economic Assessments
- Questions & Answers

Introduction

Short Span Steel Bridge Alliance

http://www.shortspansteelbridges.org/

http://www.espan140.com/

www.shortspansteelbridges.org

3 | Short Span Steel Bridge Alliance

The Short Span Steel Bridge Alliance (SSSBA)

- Program officially started September 2007
 - Objective make steel the material of choice for short span steel bridges.
 - Short span steel
 bridges have spans up
 to 140 ft

SSSBA Website

https://www.shortspansteelbridges.org/

- eSPAN140 Web-based Design Tool
- Bridge Technology Center
- Technical Design Resources
- Project Case Studies
- News Updates & Social Media
 - \circ Twitter
 - o LinkedIn
 - \circ Facebook
- Email Newsletter (sign-up to receive it)

The Problem

- Bridge engineers are well trained on the use of short span concrete bridges.
 - In fact, over than 80% of the short span bridges in the United States are made of concrete.
- Many County and (DOT) engineers are simply not educated/familiar with the design, construction, and economics of short span steel bridges.
 - Concrete provides simple, standardized, costeffective, "tinker toy" solutions to construct short span steel bridges.
 - Steel bridges are "perceived to be too" complex,
 "Swiss watch"-like, and too expensive.

The Solution

<u>Standardized designs for short span steel bridges</u>

- BTC led a 3-year industry-wide effort (owners, fabricators, designers, associations, service centers, etc. involved)
 - Over 3,000 designs evaluated
- Result = simple standardized designs for short span bridges
 - Rolled beam, plate, & buried soil steel structures
- $\circ~$ Standards used to develop eSPAN140 ~
 - 650 total preliminary bridges designed
- $\circ~$ BTC working with states to adopt state-specific standards

Short Span Steel Bridge Design Standards

Goals, Design Parameters, Weight Comparisons

www.shortspansteelbridges.org

8 | Short Span Steel Bridge Alliance

Standards for Short Span Steel Bridge Designs

- Goals:
 - o Economically competitive
 - \circ $\,$ Expedite & economize the design process
 - Simple repetitive details & member sizes.
- Bridge Design Parameters:
 - Span lengths: 40 feet to 140 feet (5-foot increments)
 - Girder spacing: 6 feet, 7.5 feet, 9 feet and 10.5 feet
 - \circ $\,$ For each of these increments, the following were designed:
 - Steel girders
 - Shear stud & stiffener layouts
 - Welding and fabrication details
 - Elastomeric bearings
 - Concrete deck design

Primary value is use as an estimating tool!

- Now have the ability to produce a valid steel bridge design in minutes
- Obtain a cost estimate from a fabricator within a day
- Can directly compete with concrete alternate
- Design can then be further optimized

Standards for Short Span Steel Bridge Designs (cont'd)

- Four types of girder types:
 - Homogeneous plate girders (50 ksi steel)
 - \circ Hybrid plate girders
 - 50 ksi top flanges and webs, 70 ksi bottom flanges
 - Lightest weight rolled beams (50 ksi steel)
 - Utilizing the lightest weight girder necessary
 - Limited depth rolled beams (50 ksi steel)
 - Designed to meet a target L/D of 25
- In addition, girders were designed to accommodate commonly stockpiled plate thicknesses and rolled beam sizes.

Standards for Short Span Steel Bridge Designs (cont'd)

- Bridges were designed according to AASHTO LRFD Specs:
 - o Strength I, Service II, Fatigue, Constructability, L/800 Deflection
 - o HL-93 Vehicular Live Loading
- Additional Design Loads:
 - SIP Unit Weight = 15 psf
 - Future Wearing Surface = 25 psf
 - Concrete barriers = 520 lb/ft
 - Misc. Steel Wt. Increase = 5%
 - o f_c' = 4,000 psi
 - Concrete Unit Weight = 150 pcf
 - Steel Unit Weight = 490 pcf
 - \circ Concrete Haunch = 2 in
 - o Constant Flange Width
 - o Constant Web Height

Standards for Short Span Steel Bridge Designs (cont'd)

• Weight comparisons (9'-0" girder spacing):

Resulting Economical Standard Selections

• Based on weight comparisons of resulting designs, the following solutions are recommended for the span ranges shown:

eSPAN140 Example Project

Step-By-Step Process for Obtaining a Steel Solution

www.shortspansteelbridges.org

14 | Short Span Steel Bridge Alliance

One-stop shop for customized steel bridge and culvert solutions!

- eSPAN140 provides:
 - Standard designs and details for short span steel crossings
 - Rolled Beam and Plate Girders
 - Buried Soil Steel Bridge Structures
 - Manufacturers' Steel Solutions (SSSBA Partners)
 - \circ Coatings Solutions
 - Industry Contacts
 - Contacts can provide budget estimates and pricing information

Free and easy to use!!!

https://www.espan140.com/

Step 1. Create a User's Account

Step 2. Input Your Specific Project Details

SOLUTIONS

Step 3. View Your Instant Customized Solutions Books

eSPAN140 Example Project

• Start new project:

My Projects

Welcome to eSPAN140. If this is your first time here, please click on "Start New Project" to begin.

If you have already created a project, please use the table below to view past projects, complete pe existing inputs you provided, please click on "Duplicate". This will allow you to create a new project I have multiple bridges to design and have only a few input values to change).

Start New Project

16 | Short Span Steel Bridge Alliance

• Step 1: Project Information

Sample	e Bridge	
City/Co	unty*	
Morga	ntown	
State/P	rovince* 🕡	
West	/irginia	•
West N Roadwa	/irginia ny Name treet	•
West Roadwa Main S Bridge	/irginia ny Name treet Span Length* 🕡	
West Roadwa Main S Bridge	/irginia ny Name treet Span Length* @ 4	

• Step 2: Project Details (general dimensions)

2		
Roadwa	/Width* 🔞	
30	0	
Feet	Inches	
Individua	Parapet Width 🕜	
Individua 1	I Parapet Width 🕡	
Individua 1 Feet	I Parapet Width	
Individua 1 Feet Individua	I Parapet Width	
Individua 1 Feet Individua 3	I Parapet Width 3 Inches I Deck Overhang Width 0	

• Step 2: Project Details (pedestrian access option)

Number	of Sidewalks	
2		-
Sidewall	Cone Width	
Feet	Inches	
Sidewall	c Two Width	
C = = t	Inches	

• Step 2: Project Details (remaining details)

15		
Degrees		
Average Daily Traff	ic 🕡	
0		
Over 2,000		•
Design Speed)	·
Design Speed Not applicable)	•

• Example output (sample plate girder elevation):

COMPOSITE PLATE GIRDER WITH PARTIALLY STIFFENED WEB - 4 GIRDERS AT 8' 10" GIRDER SPACING, HOMOGENEOUS

	PLATE GIRDER SIZE									SHEAR CONNECTOR MAX. SPAC-		
SDAN (I.) H		BOTTOM FLANGE		BOTTOM FLANGE (G)			DIAPHRAGM	SHEAR STIFFENERS		ING		INDIVIDUAL GIRDER
SPAN (L) - IL	IOP FLANGE - in	PLATE - in	, LENGTH - Ft	PLATE - in	LENGTH - Ft	WEB PLATE- in	SPACING (C) - ft	X (NO. REQ'd)	Y - ft. (SPACING)	D E		WEIGHT
85	14 x 3/4"	14 x 1"	17'	14 x 2"	51'	32 x 1/2"	21.25'	-	-	34 @ 6"	9"	14,144 lbs

• Example output (typical fabrication details):

• Example output (typical fabrication details, cont'd):

ELASTOMETRIC BEARING DETAILS - in								
	B C D		ſ	INTERNAL ELASTOMER LAYERS				
A		NO. OF LAYERS	THICKNESS - in					
16"	18"	4.375"	12"	5	0.625"			

25 | Short Span Steel Bridge Alliance

• Buried Bridge Solutions

• Manufacturer Solutions

- Durability Solutions:
 - Weathering steel
 - Galvanized steel
 - Painted steel

Questions & Answers

Thank You!

Gregory K. Michaelson, Ph.D., P.E.

michaelson@marshall.edu

www.shortspansteelbridges.org