I-44 Bridge Replacements with Buried Bridges

Lawrence County, Missouri

A Case Study For The SSSBA Steel Bridge Essentials Webinar Series Designing Cost Effective and Resilient Bridges June 6, 2022

Joel Hahm, PE Senior Engineer Contech Engineered Solutions, LLC

I-44 over Route 96 Entrance Ramp & CR1147 – Lawrence County, Missouri

Fabricator:Big R Bridge / Contech Engineered SolutionsContractor:Emery Sapp & SonsDesign Engineer:Lochmueller Group / Parsons Engineering

Existing Structures to be replaced – Precast & Steel Beam Bridges

- Design-Build team led by Emery Sapp & Sons
- Collaborative Design Process
- Key Structure Selection Factors
 - Accelerated Construction / staged construction / eliminate detours
 - Build new bridges without removing existing bridges
 - \circ $\,$ Installed cost & life cycle cost savings
 - o 75 year design life
- Buried Bridges selected over concrete girder and precast structure options

- **Development of Custom Structure Geometries (iterative process)**
- Minimum inside clearance for vehicles
- Final top of road elevations, AASHTO cover requirements
- Avoid conflicts with existing bridge elements & site features

Customized layouts & end treatments to accommodate site configurations: Rte 96 – unbalanced step bevel to address skewed alignment with I-44

Customized layouts & end treatments to accommodate site configurations: CR1147 – step beveled ends to match fill slope

Deep Corrugated Steel Buried Bridges (Rte 96)

Assembly & backfilling took place with existing bridges in service

Deep Corrugated Steel Buried Bridges (CR 1147)

Assembly & backfilling took place with existing bridges in service

Structure Selection Factors

- Weight vs. span capabilities
- Limited head room to construct below existing bridges
- \circ Speed of construction
- Lower cost of maintenance (no bridge deck, bearings, barrier walls, approach slabs, abutments, joints)
- No head to head traffic during construction
- o Simpler / faster bridge inspection
- o Mowable slopes
- Ability to extend to add future lanes

Installed Cost & Time Comparisons

- Anticipated construction time was 8 months for precast/conventional options vs. 5 months for buried bridges
- \$3.5 million estimated installed cost for precast/conventional options vs. \$3.0 million for buried bridges
- Foundation construction time & cost savings, advantages of spread footings vs. deep foundations
- Reduction in long term maintenance costs

Take-Aways – Buried Bridges

- Economical
 - o Lighter Superstructure
 - o Lighter Equipment
 - $\circ \quad \text{Lighter Foundations}$
- Ease of Erection
 - o Modular & Simple
 - \circ $\,$ Accelerated Bridge Construction $\,$
 - No Specialty Contractors needed
- Sustainability / Resilience
 - $\circ \quad 100\% \ Recyclable$
 - Steel consists of ~90% recycled materials
 - \circ Flexible
 - o Reduced Carbon Footprint

Thank You!

Joel Hahm, PE Senior Engineer Contech Engineered Solutions, LLC Joel.hahm@conteches.com

"NEVER STOP DREAMING"

- Freddy Krueger