

Objectives

• Life Cycle Sustainability Assessment (Cradle to Grave) of Two Nearly Identical, Functionally Equivalent, Two-Lane Bridges from Whitman County, WA

Steel – Seltice-Warner

Built 2020, 35 ft – 8 in, Modular Steel, 7 Rolled Beams, Corrugated Gravel Deck, County Crew Built

Concrete – Thornton Depot

Built 2019, 34 ft – 0 in, Precast Prestressed Beams, 8 Beams, Concrete Deck, County Crew Built

 Develop Procedures for Owners or Society that Considers Sustainability Benefits for the Design of Bridges

Bridges – Life Cycle

Steel Seltice-Warner

Superstructure

Construction

Maintenance

Demolition

Concrete Thornton Depot

Superstructure

Construction

Maintenance

Demolition

Superstructure Only

Bridge Lifes 75 yrs

Prefabricated Bridges and Installation Equipment and Costs

Maintenance Assumed Identical for Both Bridges (none for 25 yrs, yearly for 50 yrs)

Demolition Equipment and Costs Different for the Two Bridges

Process

- Life Cycle Sustainability Assessment
 - **Establish Criteria and Benchmarks**
 - GHG, Energy, Recycling & Wastestream Metrics
 - Life Cycle Bridge Results
- Procedure that Considers Sustainability Benefits for the Design of Bridges
 - Monetizing Sustainability Benefits
 - **Equivalent Cost Decision Making**

LEED RATING SYSTEM Categories

Sustainable Sites

- · Site Development- Protect or Restore Habitat
- Open Space
- · Rainwater Management
- Heat Island Reduction
- · Light Pollution Reduction

Water Efficiency 2

- · Outdoor Water Use Reduction
- Indoor Water Use Reduction
- · Building- Level Water Metering
- · Cooling Tower Water Use

Energy and Atmosphere

- Enhanced Commissioning
- · Optimize Energy Performance
- Advanced Energy Metering
- Demand Response
- Renewable Energy Production
- · Enhanced Refrigerant Management
- · Green Power and Carbon Offsets

Materials and Resources

- . Building Life-Cycle Impact Reduction . Building Product Disclosure and Optimization - Environmental
- . Building Product Disclosure and Optimization Sourcing of Raw Materials
- Building Product Disclosure and Optimization Material Ingredients
- · Construction and Demolition Waste Management

5 Indoor Environmental Quality

- Construction Indoor Air Quality Management Plan
- · Indoor Air Quality Assessment
- Thermal Comfort
- · Interior Lighting & Daylight
- Quality Views
- · Acoustic Performance

Innovation and Regional Priority 6/7

- Innovation
- LEED Accredited Professional
- Regional Priority: Specific Credit (4)

Envision credit list

QL1.1 Improve Community Quality of Life

QL1.2 Enhance Public Health & Safety

QL1.3 Improve Construction Safety

QL1.4 Minimize Noise & Vibration QL1.5 Minimize Light Pollution

WELLBEING

QL1.6 Minimize Construction Impacts

MOBILITY

QL2.1 Improve Community Mobility & Access QL2.2 Encourage Sustainable Transportation

QL2.3 Improve Access & Wayfinding

COMMUNITY

QL2.1 Advance Equity & Social Justice

QL2.2 Preserve Historic & Cultural Resources

QL2.3 Enhance Views & Local Character

QL2.4 Enhance Public Space & Amenities

QLO.0 Innovate or Exceed Credit Requirements

Leadership

COLLABORATION

LD1.1 Provide Effective Leadership & Commitment

LD1.2 Foster Collaboration & Teamwork

LD1.3 Provide for Stakeholder Involvement

LD1.4 Pursue Byproduct Synergies

PLANNING

LD2.1 Establish a Sustainability Management Plan

LD2.2 Plan for Sustainable Communities

LD2.3 Plan for Long-Term Monitoring & Maintenance

LD2.4 Plan for End-of-Life

ECONOMY

LD3.1 Stimulate Economic Prosperity & Developme

LD3.2 Develop Local Skills & Capabilities

LD3.3 Conduct a Life-Cycle Economic Evaluation

LDO.0 Innovate or Exceed Credit Requirement

MATERIALS

ENERGY

WATER

RA1.2 Use Recycled Materials

RA1.3 Reduce Operational Waste

RA1.4 Reduce Construction Waste

RA1.5 Balance Earthwork On Site

RA2.3 Use Renewable Energy

RA3.1 Preserve Water Resources

RA3.4 Monitor Water Systems

Resource Allocation

RA1.1 Support Sustainable Procurement Practices

RA2.1 Reduce Operational Energy Consumption

RA2.2 Reduce Construction Energy Consumption

RA2.4 Commission & Monitor Energy Systems

RA3.2 Reduce Operational Water Consumption

RA3.3 Reduce Construction Water Consumption

RAO.O Innovate or Exceed Credit Requirements

Natural World 14 Credits

EMISSIONS

CR1.1 Reduce Net Embodied Carbon

NW1.1 Preserve Sites of High Ecological Value NW1.2 Provide Wetland & Surface Water Buffers cR1.2 Reduce Greenhouse Gas Emissions

CR1.3 Reduce Air Pollutant Emissions

RESILIENCE

CR2.1 Avoid Unsuitable Development

CR2.2 Assess Climate Change Vulnerability

CR2.3 Evaluate Risk & Resilience

cR2.4 Establish Resilience Goals and Strategies

CR2.5 Maximize Resilience

CR2.6 Improve Infrastructure Integration

CRO.0 Innovate of Exceed Credit Requirements

ECOLOGY

NW3.2 Enhance Wetland & Surface Water Functions

NW3.1 Enhance Functional Habitats

NW1.3 Preserve Prime Farmland

CONSERVATION

NW2.1 Reclaim Brownfields

NW2.2 Manage Stormwater

NW1.4 Preserve Undeveloped Land

NW2.3 Reduce Pesticide & Fertilizer Impacts

NW2.4 Protect Surface & Groundwater Quality

NW3.3 Maintain Floodplain Functions

NW3.4 Control Invasive Species

NW3.5 Protect Soil Health

NW0.0 Innovate or Exceed Credit Requirements

SUSTAINABILITY CRITERIA

EMISSIONS

ENERGY CONSUMPTION

RECYCLABILITY AND WASTE MANAGEMENT LIFECYCLE COST

Superstructure Materials and Fabrication

Construction Equipment

Maintenance Equipment

Demolition Equipment

Emissions and Energy Consumption Benchmarks

Use of recycled materials

Recovery of recyclable materials during demolition

Material to the landfill

Recyclability and Waste Management Benchmarks

Lifecycle Cost Benchmarks

Life Expectancy of the Project

Initial Cost

Maintenance Cost

Demolition and Salvage/Landfill Cost

Present Value Life Cycle Cost

Emissions and Energy Consumption Metrics

- Fabricated Material and Component Emissions & Energy Consumption Metrics from Environmental Product Declarations (EPDs).
- Equipment Emissions & Energy Consumption Metrics from Analysis

Material	Description	Emissions (kgCO2e/ton)	Energy Consumption (MJ/ton)
Concrete	Precast Concrete Component	310.3	3268
	Grout	614.2	4545
Steel	Hot Rolled Steel Shapes	1106.8	16840
	Plates	1569.4	20804
	Steel Tubes	2168.2	25611
	Steel Deck	2150.0	27208
	Guardrail*	2150.0	27208
Other	#7 Gravel (1/2" x #4)	1.41	30.8

Construction Equipment	Description	Emissions (kgCO2e/hr)	Energy Consumption (MJ/hr)
Equipment	Light Equipment	50.8	724.5
	Heavy Equipment	71.1	1014.3

Superstructure Emissions and Energy Consumption

Steel Seltice-Warner

Bridge Component:	Weight (tons):	Emissions (kgCO2e/ton)	Energy (MJ/ton)	Length Factor	Emissions (kg CO2e)	Energy (MJ)
Stringers	9.337	1,106.8	16,840.1	0.953	9,851	149,892
Diaphragm	0.916	1,106.8	16,840.1	1.000	1,013	15,418
Tubes	0.308	2,168.2	25,610.8	0.953	637	7,523
Center Splice Plate	0.152	1,569.4	20,803.6	1.000	239	3,172
Side Dam	0.244	1,569.4	20,803.6	0.953	365	4,838
End Angle	0.274	1,106.8	16,840.1	1.000	304	4,621
Bridge Deck	4.699	2,150.0	27,208.3	0.953	9,631	121,880
Guardrail	0.360	2,150.0	27,208.3	0.953	737	9,328
Bridge Rail Post	0.578	1,106.8	16,840.1	1.000	639	9,725
Post Block	0.096	1,106.8	16,840.1	1.000	107	1,621
Gravel	22.655	1.4	30.8	0.953	30	665
Steel Weight	16.96		_	Sub-Total Superstructure	23,554	328,683
Reinf Concrete Weight			,			

Concrete Thornton Depot

Bridge Component:	Weight (tons):	Emissions (kgCO2e/ton)	Energy (MJ/ton)	Length Factor	Emissions (kgCO2e)	Energy (MJ)
Precast Elements	103.840	310.3	3,267.7	1.000	32,217	339,316
Misc. Steel Detail Items	0.338	2,150.0	27,208.3	1.000	727	9,196
Grout	0.999	614.2	4,545.0	1.000	614	4,540
Guardrail	0.360	2,150.0	27,208.3	1.000	773	9,785
Bridge Rail Post	0.387	1,106.8	16,840.1	1.000	428	6,517
Steel Weight	1.08			Sub-Total Superstructure	34,759	369,355
Daluf Cananata Malaha	102.04				_	·

Equipment Emissions and Energy Consumption

Steel Seltice-Warner

Construction Equipment	Hours on Site	Emissions (kgCO2e/hr)	Energy (MJ/hr)	Usage Factor	Emissions (kgCO2e)	Energy (MJ)
Heavy Equipment	130	71.1	1,014.3	0.30	2771	39558
Light Equipment	105	50.8	724.5	0.30	1599	22822
				Sub-Total Construction	4,370	62,379

Maintenance	Hours on Site/yr	Emissions (kgCO2e/hr)	Energy (MJ/hr)	Usage Factor	EoL Yrs of Maint	Emissions (kgCO2e)	Energy (MJ)
Heavy Equipment	3	71.1	1,014.3	1.00	50	10658	152145
Light Equipment	3	50.8	724.5	1.00	50	7613	108675
				Sub-Total Maintenance		18,270	260,820

Demolition	Hours on Site	Emissions (kgCO2e/hr)	Energy (MJ/hr)	Usage Factor	Emissions (kgCO2e)	Energy (MJ)
Heavy Equipment	20	71.1	1,014.3	0.50	711	10143
Light Equipment	15	50.8	724.5	0.50	381	5434
		_		Sub-Total Yearly Demolition	1,091	15,577

Concrete Thornton Depot

Construction Equipment	Hours on Site	Emissions (kgCO2e/hr)	Energy (MJ/hr)	Usage Factor	Emissions (kgCO2e)	Energy (MJ)
Heavy Equipment	128	71.1	1,014.3	0.30	2728	38949
Light Equipment	134	50.8	724.5	0.30	2040	29125
•				Sub-Total Construction	4,768	68,074

Maintenance	Hours on Site/yr	Emissions (kgCO2e/hr)	Energy (MJ/hr)	Usage Factor	EoL Yrs of Maint	Emissions (kgCO2e)	Energy (MJ)
Heavy Equipment	3	71.1	1,014.3	1.00	50	10658	152145
Light Equipment	3	50.8	724.5	1.00	50	7613	108675
				Sub-Total Maintenance		18,270	260,820

Demolition	Hours on Site	Emissions (kgCO2e/hr)	Energy (MJ/hr)	Usage Factor	Emissions (kgCO2e)	Energy (MJ)
Heavy Equipment	40	71.1	1,014.3	0.50	1421	20286
Light Equipment	20	50.8	724.5	0.50	508	7245
				Sub-Total Yearly Demolition	1,929	27,531

Life Cycle Emissions and Energy Consumption

Emissions

	Emissions (kgCO2e)						
	Superstructure	Construction	Maintenance	Demolition	Total		
Steel	23554	4370	18270	1091	47284		
Concrete	34759	4768	18270	1929	59726		
	Steel 68%	Less	Same	Less	79%		

Energy Consumption

	Energy (MJ)						
	Superstructure	Construction	Maintenance	Demolition	Total		
Steel	328683	62379	260820	15577	667459		
Concrete	369355	68074	260820	27531	725780		
	Steel 89%	Less	Same	Less	92%		

RESULTS – Steel Bridge Has Sustainability Advantages

Recycling, Surplus and Landfill

- Recycling Surplus or Cost
 98% Steel Recycled at Surplus of \$100/ton
 80% of Concrete Recycled at Cost of \$4.10/ton
- Landfill Cost \$75/ton

Bridge	Steel Weight (tons)	% Steel Recycled	Concrete Weight	% Concrete Recycled	Steel Recycled (tons)	Concrete Recycled (tons)	Steel to Landfill (tons)	Concrete to Landfill (tons)
Steel	16.96	98%	-	80.0%	16.62	0.00	0.34	0
Concrete	1.08	98%	103.84	80.0%	1.06	83.07	0.02	20.768

Seltice-Warner Salvage Payback and Landfill Costs									
Tons of Steel Recycled	16.62								
Tons of Steel to Landfill	0.34								
Recycling Payback	\$1,662.49								
Landill Cost	\$25.45								

Thornton Depot Salvage Payback and Landfill Costs										
Tons of Steel Recycled	1.06									
Tons of Steel to Landfill	0.02									
Tons of Concrete Recycled	83.07									
Tons of Concrete to Landfill	20.77									
Recycling Cost	\$234.30									
Landill Cost	\$1,559.23									

Present Value of Costs (OMB Discount Rate 1.70%)

Steel Seltice-Warner

Bridge Component:	Costs	Length Factor	Adjusted Costs			Present Value Cost		
Prefabricated Bridge	\$	60,134.00	0.953	\$	57,323.95	\$	57,323.95	
Labor	\$	8,750.00	1.000	\$	8,750.00	\$	8,750.00	
Equipment	\$	8,255.00	1.000	\$	8,255.00	\$	8,255.00	
Materials	\$	3,491.00	0.953	\$	3,327.87	\$	3,327.87	
			Sub-Total Superstructure	\$	77,656.81	\$	77,656.81	

Demolition	Costs	Length Factor	Adjusted Costs	Present Value Cost
Labor	\$ 5,000.00	1.000	\$ 5,000.00	\$ 1,412.21
Equipment	\$ 1,110.00	1.000	\$ 1,110.00	\$ 313.51
Salvage	\$ (1,662.49)	0.953	\$ (1,584.81)	\$ (447.61)
Landfill	\$ 25.45	0.953	\$ 24.26	\$ 24.26
		Sub-Total Demolition	\$ 4,549.45	\$ 1,302.36

Maintenance	Costs / yr	Length Factor	EoL Yrs Maint	Life (yrs)	Adjusted Costs/ yr	Present Value Cost
Labor	\$ 375.00	1.00	50.00	75	\$ 375.00	8243
Equipment	\$ 375.00	1.00	50.00	75	\$ 375.00	8243
				Sub-Total Maintenance	\$ 750.00	\$ 16,485.34

Concrete Thornton Depot

Bridge Component:	Costs	Length Factor	Adjusted Costs			Present Value Cost		
Prefabricated Bridge	\$	73,569.00	1.000	\$	73,569.00	\$	73,569.00	
Labor	\$	11,800.00	1.000	\$	11,800.00	\$	11,800.00	
Equipment	\$	10,444.00	1.000	\$	10,444.00	\$	10,444.00	
Materials	\$	1,032.00	1.000	\$	1,032.00	\$	1,032.00	
•			Sub-Total Superstructure	\$	96,845.00	\$	96,845.00	

Demolition	Costs Length Factor		Adjusted Costs	Present Value Cost		
Labor	\$ 7,500.00	1.000	\$ 7,500.00	\$	2,118.31	
Equipment	\$ 2,040.00	1.000	\$ 2,040.00	\$	576.18	
Salvage	\$ 234.30	1.000	\$ 234.30	\$	66.18	
Landfill	\$ 1,559.23	1.000	\$ 1,559.23	\$	1,559.23	
		Sub-Total Demolition	\$ 11,333.53	\$	4,319.90	

Maintenance	C	osts / yr	Length Factor	EoL Yrs Maint	Life (yrs)	Adjusted Costs/ yr	F	Present Value Cost
Labor	\$	375.00	1.00	50.00	75	\$ 375.00	\$	8,242.67
Equipment	\$	375.00	1.00	50.00	75	\$ 375.00	\$	8,242.67
					Sub-Total Maintenance	\$ 750.00	\$	16,485.34

Life Cycle Costs

	Life Cycle Cost													
	Superstructure		Tot Initial		PV Maint		PV Demo		Total	LCC				
Steel	\$	57,324	\$	77,657	\$	16,485	\$	1,302	\$	95,445				
Concrete	\$	73,569	\$	96,845	\$	16,485	\$	4,320	\$	117,650				

Steel 78% 80% Same Less 81%

Considering Sustainability in Design Decisions Monetizing Sustainability Benefits

• Sustainable design is predicated on the idea that society is willing to pay extra for reducing harmful effects on the environment.

For these Two Bridges, This Decision is Trivial
Steel has Higher Sustainability Benefits
AND Steel has Lower Costs
No Decision Required
But, What if the Steel Bridge Cost More than the Concrete Bridge?

- Considering sustainability in the design of a bridge entails answering the question, "what additional cost would society or the owner be willing to pay to increase sustainability benefits?"
- Suppose Society is Willing to Pay:

```
$0.20 per kg of CO<sub>2</sub>e Reduced
$0.04 per MJ of Energy Reduced
$50 per ton of Landfill Reduced
```

Considering Sustainability in Design Decisions Monetizing Sustainability Benefits

• Then, an Equivalent Cost can be Determined for Any Number of Design Alternatives. Basis of Analysis on the Lowest Cost Alternative.

- The Lowest Equivalent Cost Alternative is Chosen Considering the Sustainability Benefits and Cost of the Alternative.
- This is Actually an Incremental Benefit-Cost Analysis "Hidden" in Terms Owners and Society Understand (Similar to Initial or Life Cycle Costs)

Considering Sustainability in Design Decisions

Equivalent Cost = [Initial or Life Cycle Cost] - [Reduced kg CO2e]*(\$0.20/kg CO2e) - [Reduced MJ]*(\$0.04/MJ) - [Reduced Landfill tons]*(\$50/ton)

Bridge	In	nitial or	Initi	al or Life Cycle	Гotal	Reduction				Cost Benefit		Total Cost	Equivalent Cost
	Life	Cycle Cost	kg CO2e	MJ Consumed	Landfill (tons)	kg CO2e	MJ Consumed	Landfill (tons)	kg CO2e	MJ Consumed	Landfill (tons)	Benefit	
Alt 1	\$	100,000	59726	725780	21	0	0	0	\$0	\$0	\$0	\$0	\$100,000
Alt 2	\$	105,000	70000	720000	10	-10274	5780	11	-\$2,055	\$231	\$540	-\$1,284	\$106,284
Alt 3	\$	105,000	47284	667459	1	12442	58321	20	\$2,488	\$2,333	\$1,000	\$5,821	\$99,179
Alt 4	\$	107,000	45000	664000	10	14726	61780	11	\$2,945	\$2,471	\$540	\$5,956	\$101,044
Alt 5	\$	107,000	44000	750000	1	15726	-24220	20	\$3,145	-\$969	\$1,000	\$3,176	\$103,824

- Alt 3 has lowest Equivalent Cost at \$99179 (Initial Cost Total Cost Benefit)
 - Alt 1 is Lowest Cost with a Basis Total Cost Benefit of Zero
 - Alt 4 has highest Sustainability Benefits with \$5956 more benefits than Alt 1, but Costs \$7000 more than Alt 1 (Incremental B/C < 1) the Sustainability Benefits are not Worth the Extra Cost
 - Alt 3 has \$5821 more Sustainability Benefits than Alt 1 and costs only \$5000 more (Incremental B/C = 1.16)
 the Sustainability Benefits Outweigh the Additional Costs
 - Alts 2 & 4 additional sustainability benefits (if any) do not outweigh the additional costs
- Alt 3 costs \$5000 more, but has a Societal Accepted Rate of Return of \$5821
- This is Incremental Benefit Cost Analysis with Monetized Sustainability Benefits
- Owner or Society Determines the Acceptable Cost for Sustainability Benefits
- Owners Understand Equivalent Cost: Compare Similar to Initial Costs or Life Cycle Costs

Summary & Conclusions

Results of Steel Seltice-Warner and Concrete Thornton Depot Bridges

For the Installed Bridge

Steel had 30% less Emissions

Steel had 11% less Energy Consumed

For the Life Cycle

Steel had 21% less Emissions (31300 equivalent vehicle miles)

Steel had 8% less Energy Consumed (0.6 homes for a year)

Costs

Steel had 22% less Prefabricated Bridge Costs

Steel had 20% less Installed Initial Costs

Steel had 19% less Life Cycle Costs

Summary & Conclusions

Equivalent Cost Procedure

- Similar to Initial Cost or Life Cycle Cost Decision Making
- Owner or Society Driven with Acceptable Sustainability Benefit Costs
- Flexible in Analysis Details
 - Structure Only or Structure and Equipment
 - Initial Costs or Life Cycle Costs
 - Fabricated Bridge, Installed Bridge, or Life Cycle Bridge with or without Maintenance and Demolition
 - Any Combination of Emissions, Energy Consumed and Landfill Use (Others Could be Added)
 - Consider Total Energy or Only Non-Renewable Energy

```
Equivalent Cost = [Initial or Life Cycle Cost]
```

- [Reduced kg CO2e]*(Acceptable \$/kg CO2e)
- [Reduced MJ]*(Acceptable \$/MJ)
- [Reduced Landfill tons]*(Acceptable \$/ton)

Acknowledgements

American Iron & Steel Institute

Mark Thimons, VP Sustainability Dan Snyder, Director, SSSBA

Whitman County, WA

Mark Storey, County Engineer
Dean Cornelison, Assistant County Engineer

University of Wyoming, Civil & Architectural Engineering and Construction Management
Tony Denzer, Professor and Head
William Bellamy, Professor of Practice

The opinions and conclusions in this report are not necessarily those of the American Iron & Steel Institute or the Short Span Steel Bridge Alliance