

Short Span Steel Bridges for Rail Bridges and Rail Overpasses

AREMA Committee 15
May 14, 2025

**Michael G. Barker, PE
University of Wyoming &
SSSBA, Director of Education**

**Dan Snyder
VP Construction, AISI
Director of SSSBA**

Today's Presentation

- Short Span Steel Bridge Alliance
- Initial and Life Cycle Costs of Steel & Concrete Highway Bridges
- Rail Bridges
 - NSBA Standard Short Span Designs
 - Replacing Many Multi-Span with Longer Spans
 - 80 Ft Plate Girder Bridge Case Study
- Rail Overpasses
 - Simple Span Traditional Bridges
 - Buried Steel Bridges
 - Simple Span Prefabricated Bridges
 - Press-Brake Tub Girder Bridges

Short Span Steel Bridge Alliance

A group of **bridge** and buried soil structure industry leaders who have joined together to provide **educational** information on the design and construction of short span steel bridges in installations up to **140 feet in length**.

Membership

Short Span Steel Bridge Solutions

Buried Bridges

Rolled Beam & Plate Girders

Press-Brake-Formed Tub Girders

Truss Bridges

What Do We Provide?

- Education
 - Workshops, Webinars, Newsletter
- Technical Resources
 - Standards, best practices, case studies
- Simple Design Tools (eSPAN140)
- Project Assistance
- Find a Supplier
- Networking / SSSBA Semiannual Meeting

Initial Costs: Steel & Concrete

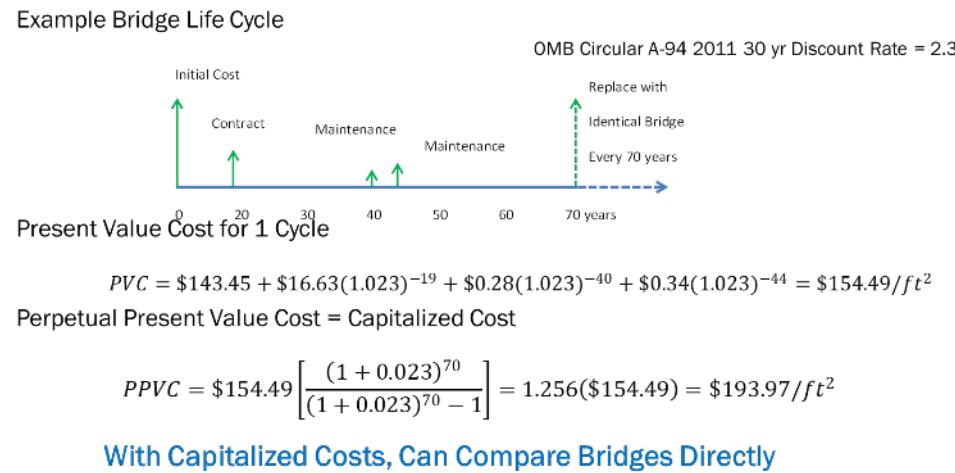
Preconception that Concrete is Less Expensive than Steel for Typical Bridges

- Many Times Steel is Not Even Considered
- Owners Paying More Than They Could for Bridges
- Unwarranted Lack of Competition Not Good

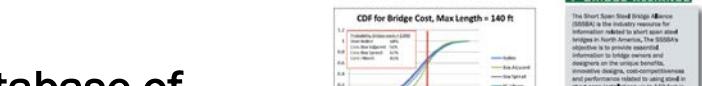
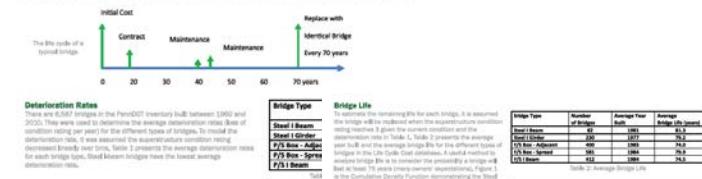
Steel Bridges Compete and Win!

Studies at:
ShortSpanSteelBridges.org

What About Life Cycle Costs?


As owners replace their bridge infrastructure, the question of Life Service and Life Cycle Costs routinely comes up between concrete and steel bridge options

The bridge industry **does** did not have a good answer:




Both steel and concrete bridge advocates claim an advantage
Anecdotal information is not convincing

Historical Life Cycle Costs of Steel & Concrete Girder Bridges

Examine Historical Life Service (Performance and Maintenance) and Agency Life Cycle Costs (True Agency Costs for a Bridge) of Steel and Concrete Bridges in Pennsylvania

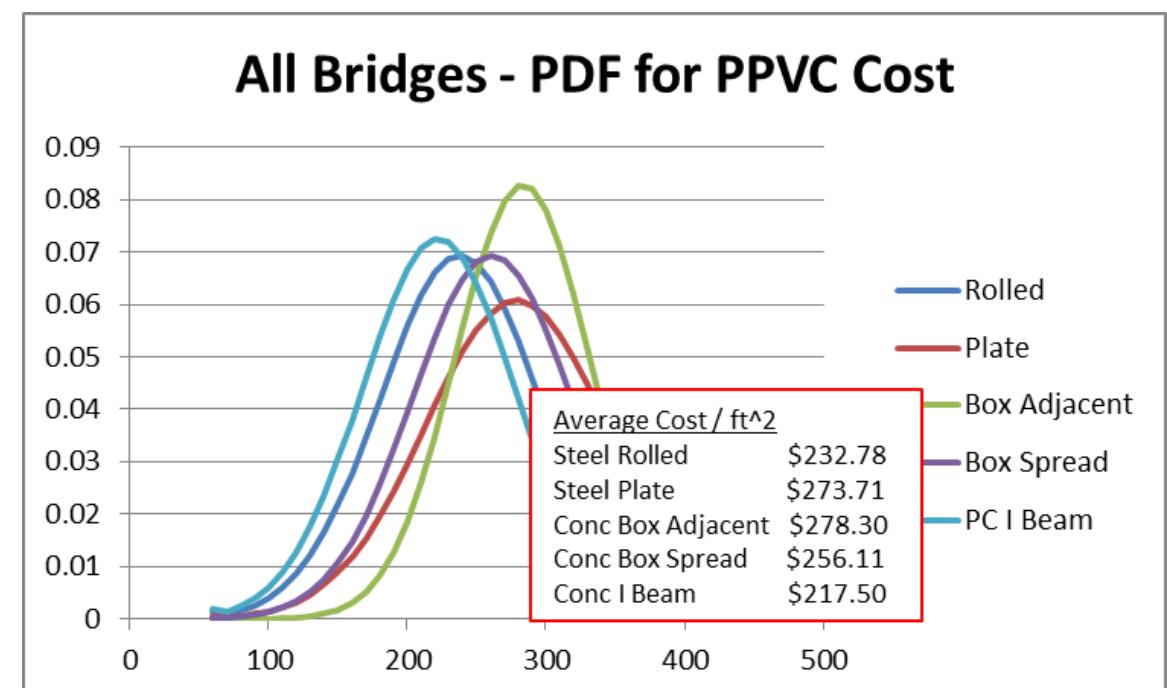
Thank You to PennDOT professionals for their participation
Support from AISI, NSBA and AGA

Large Database of Steel & Concrete Bridges

Download the research report at
www.ShortSpanSteelBridges.org

**SHORT SPAN STEEL
+ BRIDGE ALLIANCE**

The Short Span Steel Bridge Alliance (SSSBA) is the industry resource for information related to short span steel bridges in North America. The SSSBA strives to promote the use of steel and innovation to bridge owners and contractors. The SSSBA is a group of bridge design, construction, competitiveness and performance related to using steel in all types of short span bridges. In addition to the SSSBA partners include bridge and related industry leaders, including manufacturers, contractors, representatives of related associations and government organizations. To learn more visit www.ssba.org or follow us on Twitter @SSBIAccord2014.


Conclusions

Typical Concrete and Steel Bridges are Competitive on Initial Cost, Future Costs, Life Cycle Costs and Bridge Life

Owners Should Consider Both Steel and Concrete Alternatives for Individual Bridge Projects

All are “similar” with
None “Way Out” of Balance

Report on ShortSpanSteelBridges.org
Additional Report on LCC Galvanizing

Railroad Bridges

Priorities

Shutdown Time – Revenues
Economy
Substructures
Roadway Closures
Deck Configurations
Open Deck
Ballast Deck

Steel Railroad Bridges

Guidelines for the Design of Steel Railroad Bridges for Constructability and Fabrication

2.2. Span Length

Practical span lengths by superstructure type are:

- Rolled beam or welded deck girders for spans up to 70 feet.
- Deck plate girders for spans of 70 to 150 feet.
- Through plate girders for spans between 70 to 200 feet.
- Trusses over 200 feet. The maximum practical length of simply supported truss spans is 400 feet.

The above practical span lengths are applicable to open and ballasted deck bridges.

Rolled beams are usually more economical than welded plate girders for short spans.

Welded built-up plate girders are more economical than bolted construction.

Removing Interior Piers

Benefits of Longer Spans

- Economy
- Less Environmental Impact
- Less Piers & Obstructions

Plate Girder Replacement Railroad Bridge Project

Assonet River Bridge, Assonet, MA

Designer: HNTB

Fabricator: Greiner Industries

Owner: Mass Bay Transit Authority

Galvanizer: V&S Galvanizing

MBTA Commuter Rail System

Forest Setting over the Assonet River

80 FT Simple Span with 7 ft Steel Plate Girders

Hot-Dip Galvanized

Assembled Off Site, Railed In & and Lifted into Place

11 Day Shutdown

Plate Girder Replacement Railroad Bridge Project

Assonet River Bridge, Assonet, MA

Benefits of Steel Bridges

Economy

Longer Spans

Reduce Interior Piers

Minimize Underneath Disruption

Light Weight

Lighter Equipment

Smaller Abutments

Modular

Accelerated Bridge Construction

Resilient

Long Life – 100+ Years

Robustness Against Extreme Events

Ease of Inspection

Ease of Repair

Steel Bridges Over Railroad Lines

Manufacturer Solutions & Traditional Fabricated Bridges

Benefits of Steel Bridges

- Economy
- Light Weight
- Lighter Equipment
- Smaller Abutments
- Modular
- Accelerated Bridge Construction
- Resilient

Prefabricated & ABC Steel Bridges

Showcase of 3 Different Steel Bridges

Bridge Case Studies

Buried Steel Bridge – Big R

Modular Beam Bridge - Contech

Press-Brake Tub Girder – Valmont

Prefabricated Bridges

Accelerated Bridge Construction

Buried Steel Bridge - Corrugated Steel Plate – Contractor Built

VT Route 2B Bridge Replacement, St. Johnsbury, VT

Contractor: JP Sicard

Fabricator: Big R Bridge

28 day max. trail closure / 50 day road closure for all work

47'11" span x 26'9" rise Arch

Buried Steel Bridge - Corrugated Steel Plate

Buried Steel Bridge - Corrugated Steel Plate

VT Route 2B Bridge Replacement, St. Johnsbury, VT

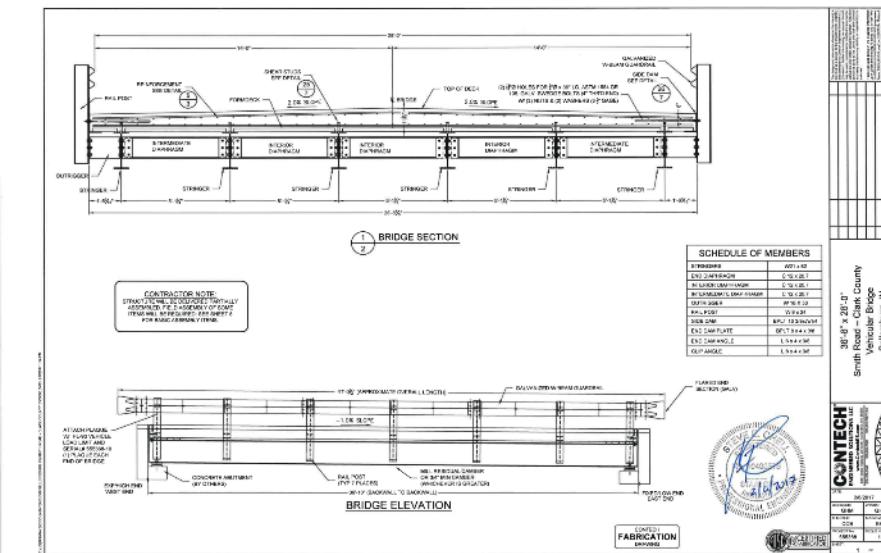
Case Studies - Buried Steel Bridge

Corrugated Steel Animal Overpass Reduces Wildlife-Vehicle Collisions

Buried Steel Bridge Saves \$500,000 and Three Months Versus Concrete Option

Case Study Modular Beam

Smith Road Bridge. Clark County, IN


Contractor: CivilCon

Fabricator: Contech

West Chester, OH

36 ft 8 in long, 28 ft wide Modular Rolled Beam Single Span Replaced Two-Span Bridge

Modular Beam

Modular Beam

Case Studies Modular Beams

Seltice-Warner Bridge, White Road, Whitman County, WA

Fabricator: BigR/Contech
Contractor: Whitman County Crew
Design Engineer: Mark Storey, County Engineer

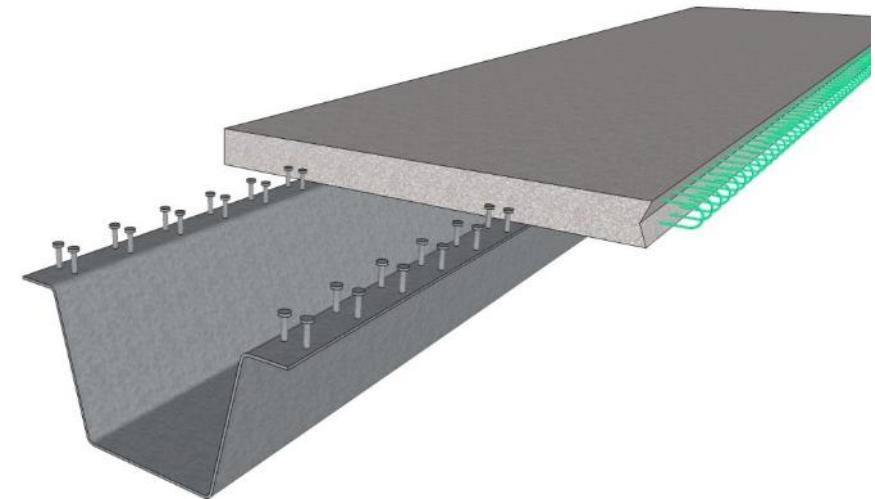
35 ft Span x 28 ft Wide – Gravel Riding Surface

2-Girder Modules / 3 Modules
No Concrete Curing

Schoepps Valley Road, Waumandee, WI

Fabricator: Wheeler
Contractor: JF Brennan

Three-Simple-Span (3 x 48 ft) with 24 ft Roadway
Emergency Replacement During Winter Months
No Concrete Curing


Wheeler

Press-Brake-Formed Steel Tub Girders

- Modular shallow trapezoidal boxes fabricated from cold-bent structural steel plate
 - Weathering steel or galvanized.
- Reduction in fabrication costs due to cold-bending versus welding of the section and mass production.
- Advantages include:
 - Accelerated with precast deck (install in 1 or 2 days)
 - Modular
 - Simple to fabricate and install

SSSBA Research Started in 2012
First PBTG Bridge Built in 2015

Press-Brake Tub Girder – Contractor Built

Barron County, WS

Fabricator: Valmont

Contractor: Larson Construction

Existing Structure

3-Span Timber Slab

96 ft Length

Deterioration and Deficient

Replacement Structure Requirements

Two Span

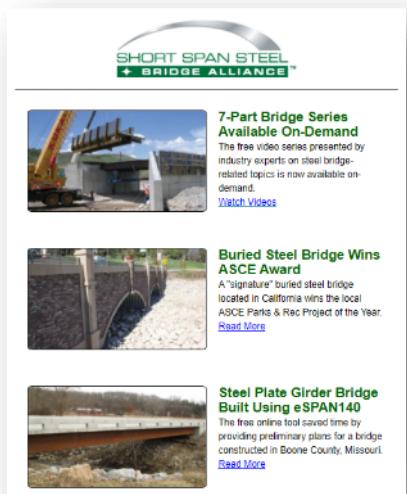
104 ft Length

Increased Hydraulic Opening and Clearance

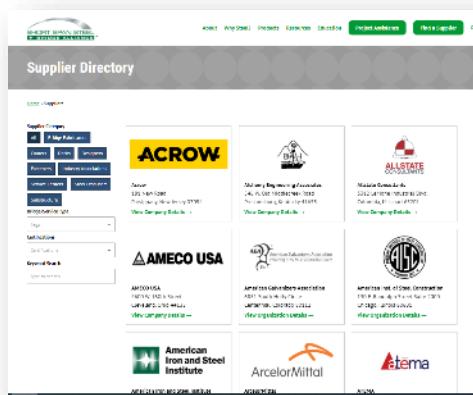
Press-Brake Tub Girder

Other Finishing Fabrication

Pre-Decked - Composite
PBTGs Pre-Decked
Closure Pours



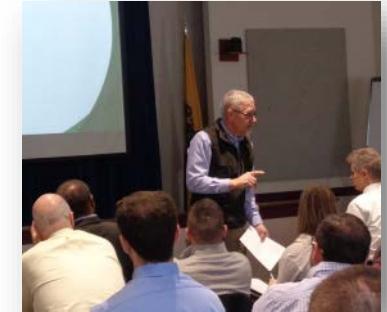
Field Assembly - Composite
PBTGs no Deck
Precast Deck Panels
Grouted Shear Pockets
Closure Pours



5 Ways to Keep Learning About Steel Bridges

1. Subscribe to the Weekly Newsletter

2. Find a Supplier


3. Design a Bridge in 5-Minutes

4. Receive Free Project Assistance

5. Schedule a Workshop/Webinar

www.ShortSpanSteelBridges.org

Questions? Dan Snyder, Director, SSSBA, dsnyder@steel.org, (301) 367-6179

Website: ShortSpanSteelBridges.org

Twitter: [@ShortSpanSteel](https://twitter.com/ShortSpanSteel)

Facebook: Short Span Steel Bridge Alliance

Summary: Today's Steel Bridges

State of the Art & Innovative Designs

Durable

Speed of Construction – Accelerated Bridge Construction

Cost Effectiveness

Sustainability

Resiliency

**How Can SSSBA and SSSBA Members
Help and Support
AREMA and AREMA Members**