

Bridge Economy, Initial Costs and Life Cycle Costs

New Jersey Short Span Steel Bridge Workshop
February 12, 2026

Dr. Michael G. Barker, PE
University of Wyoming &
SSSBA, Director of Education

Steel & Concrete Bridges

Initial Costs

Life Cycle Costs

Initial Costs: Steel & Concrete

Preconception that Concrete is Less
Expensive than Steel for Typical Bridges

Many Times Steel is Not Even Considered
Owners Paying More Than They Could for Bridges
Unwarranted Lack of Competition Not Good

Missouri County Bridges – Where the SSSBA Began

Steel

Audrain County, MO Bridge 411

Built 2012

Steel 4 Girders

47.5 ft. Span

24 ft. Roadway Width

2 ft. Structural Depth

No Skew

Concrete

Audrain County, MO Bridge 336

Built 2012

Precast 6 Hollowcore Slab Girders

50.5 ft. Span

24 ft. Roadway Width

2 ft. Structural Depth

20° Skew

County Crew
Built Bridges

Side-by-Side Comparison Total Cost of Structure

Steel

19.3% Total
Bridge Cost
Savings with Steel

Concrete

Total Bridge Costs

Material	= \$41,764
Labor	= \$24,125
Equipment	= \$21,521
Guard Rail	= \$ 7,895
Rock	= \$ 8,302
Engineering	= \$ 8,246
TOTAL	= \$111,853 (\$97.48 / sq. ft.)

Total Bridge Costs

Material	= \$67,450
Labor	= \$26,110
Equipment	= \$24,966
Guard Rail	= \$ 6,603
Rock	= \$ 7,571
Engineering	= \$21,335
TOTAL	= \$154,035 (\$120.83 / sq. ft.)

Superstructure Only Comparison

Steel

Superstructure Costs

Material

Girders	= \$ 21,463
Deck Panels	= \$ 7,999
Reinf Steel	= \$ 3,135
Concrete	= \$ 4,180
Labor	= \$ 5,522
Equipment*	= \$ 500
SUPER TOTAL	= \$ 42,799

SUPER TOTAL = \$37.54 / sq. ft.

Concrete

Superstructure Costs

Material

Slab Girders	= \$ 50,765
Deck Panels	= \$ 0
Reinf Steel	= \$ 724
Concrete	= \$ 965
Labor	= \$ 4,884
Equipment*	= \$ 4,000
SUPER TOTAL	= \$ 61,338

SUPER TOTAL = \$50.61 / sq. ft.


**Added cost to use galvanized steel = \$5,453.80 or \$0.22 / lb. (includes est. 10% fabrication fee)*

*** Cost to use weathering steel is approximately \$0.04 / lb. (already included in cost in example)*

**County Crane (30 Ton) used for Steel, Larger Rented Crane (100 Ton) Required for Concrete
(Equivalent County Crane Cost is \$1520, would result in Steel Cost of \$38.88 / sq. ft.)*

True Cost Comparison Steel vs Concrete

Steel: Superstructure \$37.54 per sq. ft.

Concrete: Superstructure Cost \$50.61 per sq. ft.

25.8%
superstructure
cost savings

Same bridge conditions:

- Structural Depth = 2 ft. (No Difference in Approaches)
- Roadway Width = 24 ft.
- Same Abutments for Both Can be Used (Steel Could Use Lighter)
- Same Guard Rail System
- Same Work Crew

Case Study Bridges: Other Bridges in Audrain County

Superstructure	Steel						Concrete				
	Bridge Number	061	140	149	152	710	AVG	028	057	069	520
Year Built	2008	2008	2008	2009	2010	AVG	2009	2010	2011	2006	AVG
Span Length	50	50	40	62	64	53.2	36	36	38	40	37.5
Skew	0	0	0	30	35	13	0	15	20	30	16.25
Cost Summary											
- Labor	\$14,568	\$21,705	\$15,853	\$24,765	\$31,949	\$21,768	\$12,065	\$15,379	\$14,674	\$19,044	\$15,291
- Material	\$56,676	\$53,593	\$46,282	\$92,821	\$69,357	\$63,746	\$51,589	\$54,450	\$50,576	\$46,850	\$50,866
- Rock	\$6,170	\$6,216	\$3,694	\$8,235	\$6,501	\$6,163	\$5,135	\$7,549	\$5,378	\$3,621	\$5,421
- Equipment	\$7,487	\$12,026	\$7,017	\$19,579	\$15,266	\$12,275	\$5,568	\$10,952	\$11,093	\$14,742	\$10,589
- Guardrail	\$4,715	\$7,146	\$3,961	\$7,003	\$7,003	\$5,966	\$4,737	\$4,663	\$5,356	\$3,323	\$4,520
Construction Cost	\$89,616	\$100,686	\$76,807	\$152,403	\$130,076	\$109,918	\$79,094	\$92,993	\$87,077	\$87,580	\$86,686
CONST. COST PER FT ²	\$74.68	\$83.91	\$80.01	\$102.42	\$84.68	\$86.09	\$91.54	\$107.63	\$95.48	\$91.23	\$96.32

Missouri DOT State Bridges

Both Bridges Cross US 63 in Boone County

Concrete P/S: 92 ft – 92 ft

Route H (Columbia Airport)

Built 2011

Steel Plate Girder: 98 ft – 98 ft

Discovery Parkway (Columbia)

Built 2007

Contractor
Built Bridges

Missouri DOT State Bridges

Both Bridges Cross US 63 in Boone County

Concrete P/S: 92 ft – 92 ft

Route H (Columbia Airport)

Built 2011

70.00	Pile Point Reinforcement	22	EA	\$2,420.00
20.03	Class B Concrete (Substructure)	76.2	CUY	
42.13	Slab on Concrete I-Girders			
42.15	Safety Factor			

Using ENR CCI Index Increase of 2.7%/yr
For 2017

Concrete Steel

$= \$ 91.18/\text{ft}^2$

$= \$ 85.58/\text{ft}^2$

Letting Date 9/28/2007			
1560	206100	Class 1 Excavation	
1580	7021012	Structural Soil	
1570			
$7\%/\text{yr}$ $= \$ 91.18/\text{ft}^2$ $= \$ 85.58/\text{ft}^2$			
7151001	Vertical Drain at End Bents	12	EA
1720	7162000 Laminated Neoprene Bearing Pad	2	EA
1710	7161003 Laminated Neoprene Bearing Pad (Tapered)	9	EA
1730	7251000 Corrugated Metal Pipe Pile Spacers	18	EA
1670	7125365A Intermediate Field Coat (System G)	20	EA
1680	7125370A Finish Field Coat (System G)	22100	SQFT
1690	7129911 Misc. Fab. Struc. Low Alloy Steel (Aesthetics)	2800	SQFT
		24330	LB
Total Bridge Cost = \$1,057,538.80			
$\text{Cost}/\text{ft}^2 = \64.04			
$\text{Cost}/\text{ft}^2 \text{ with ENR CCI Adjustment of 1.139} = \72.94			

Summary on Initial Costs

SSBBA Conducted Case Studies:

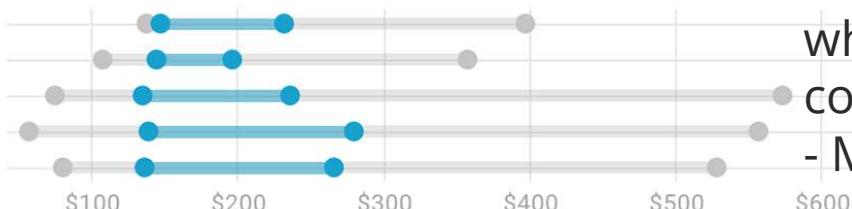
County & State Bridges

Bids & Actual Costs

Case Studies of County Bridges

Others Not Shown Here

NSBA Cost Study


National Bridge Cost by Beam Subtype (\$/SF)

(#) indicates number of bridges for each beam type

● Minimum ● 25th Percentile ● 75th Percentile ● Maximum

Less Than 100 ft.

Steel Plate Girder (19)
Steel Rolled Beam (66)
Concrete I-Beam (203)
Concrete Box Beam (104)
Concrete Slab (48)

"These conclusions come as a surprise to the authors, who assumed that concrete bridges would be more cost-competitive than steel bridges."
- Mike DiGregorio, HDR

Superstructure	Steel						Concrete					
	061	140	149	152	710	AVG	028	057	069	520	AVG	
Year Built	2008	2008	2008	2009	2010	AVG	2009	2010	2011	2006	AVG	
Span Length	50	50	40	62	64	53.2	36	36	38	40	37.5	
Skew	0	0	0	30	35	13	0	15	20	30	16.25	
Cost Summary												
- Labor	\$14,568	\$21,705	\$15,853	\$24,765	\$31,949	\$21,768	\$12,065	\$15,379	\$14,674	\$19,044	\$15,291	
- Material	\$56,676	\$53,593	\$46,282	\$92,821	\$69,357	\$63,746	\$51,589	\$54,450	\$50,576	\$46,850	\$50,866	
- Rock	\$6,170	\$6,216	\$3,694	\$6,235	\$6,501	\$6,163	\$5,135	\$7,549	\$5,378	\$3,621	\$5,421	
- Equipment	\$7,487	\$12,026	\$7,017	\$19,579	\$15,266	\$12,275	\$5,568	\$10,952	\$11,093	\$14,742	\$10,589	
- Guardrail	\$4,715	\$7,146	\$3,961	\$7,003	\$7,003	\$5,966	\$4,737	\$4,663	\$5,356	\$3,323	\$4,520	
Construction Cost	\$89,616	\$100,686	\$76,807	\$152,403	\$130,076	\$109,918	\$79,094	\$92,993	\$87,077	\$87,580	\$86,686	
CONST. COST PER FT ²	\$74.68	\$83.91	\$80.01	\$102.42	\$84.68	\$86.09	\$91.54	\$107.83	\$95.48	\$91.23	\$98.32	

State Bridge (Designed by eSPAN140)

Kansas Department of Transportation

- Shawnee County
- 112 feet (5 plate girder bridge)
- Competitive bid process (steel vs. concrete)
- DOT used eSPAN140 for preliminary design
- Constructed in summer 2014

Steel Bridge Bid

Concrete Bridge Bids

Steel = \$ 1.240 mil

Concrete = \$ 1.243 – \$ 1.425 mil

County Bridge (Designed by eSPAN140)

- Boone County, Missouri (Local)
- High Point Lane Bridge
- 102 feet (2 lane rural road plate girder bridge)
- 44" weathering steel plate girders (4 lines)
- Constructed in summer 2013

Steel Bridges Compete and Win!

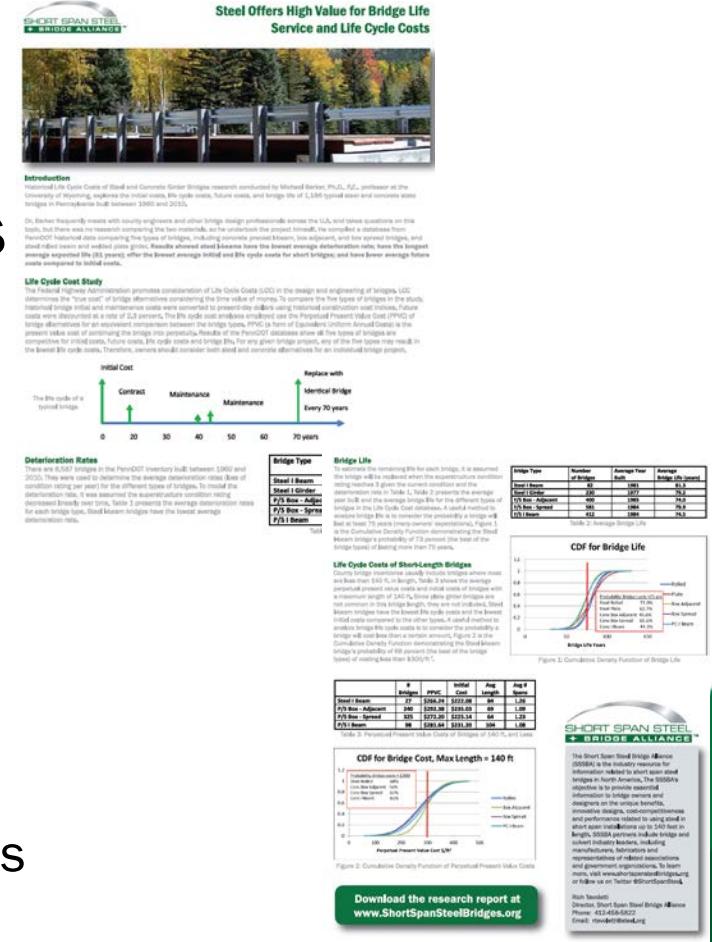
Preconception is Misconception
Steel & Concrete Bridges Are Competitive

What About Life Cycle Costs?

As owners replace their bridge infrastructure, the question of Life Service and Life Cycle Costs routinely comes up between concrete and steel bridge options

The bridge industry **does** did not have a good answer:

Both steel and concrete bridge advocates claim an advantage
Anecdotal information is not convincing


Historical Life Cycle Costs of Steel & Concrete Girder Bridges

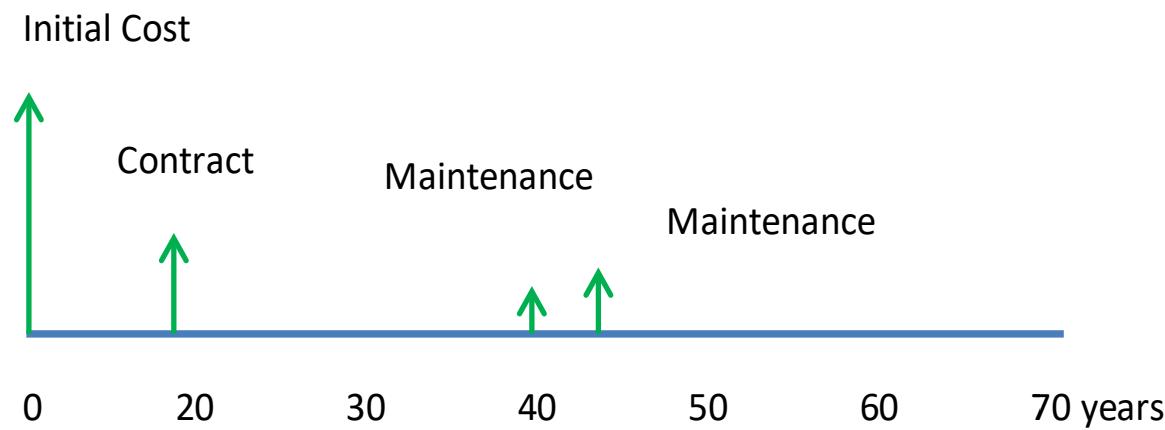
Examine Historical Life Service (Performance and Maintenance) and Agency Life Cycle Costs (True Agency Costs for a Bridge) of Steel and Concrete Bridges in Pennsylvania

Report on ShortSpanSteelBridges.org

Additional Report on Galvanized Bridges

Thank You to PennDOT professionals for their participation
Support from AISI, NSBA and AGA

Life Cycle Cost Data Collection



Start with a Comprehensive Inventory of Bridges

Initial Costs & Date Built

Maintenance Costs and Date Performed

End of Service Date – End of Life Model

PennDOT Database Development

Criteria to Develop LCC Bridge Database

Modern typical bridge structures

Precast I-Beam, Box Adjacent, and Box Spread bridges
Steel Rolled Shape and Welded Plate Girder bridges

Bridges built between 1960 and 2010

Bridges with complete and accurate department maintenance records

Consider any maintenance cost that is equal to or greater than \$0.25/ft²

Bridges with known initial costs

Bridges with complete and accurate external contractor maintenance and rehabilitation

Initial cost limitation to bridges with initial cost less than \$500/ft² and greater than \$100/ft²

Note: Total Recorded Initial and Maintenance Costs Used

PennDOT Database Development

All Bridges in PennDOT Inventory = 25,403

Number of Type Bridges in Inventory = 8,466

Number of Types Built 1960-2010 = 6,587

Bridges that Meet All Criteria

Bridge Type	Number of Bridges that Meet All criteria	Percentage of 1960 – 2010 database
Steel I Beam	82	14.9%
Steel I Girder	230	22.6%
P/S Box - Adjacent	400	27.8%
P/S Box - Spread	581	26.5%
P/S I Beam	412	29.8%
Total	1705	25.9%

PennDOT Database Bridge Life Model

Bridge Life Model uses Average Deterioration Rates of Total PennDOT Inventory

Assume Bridge Replacement at Condition Rating = 3

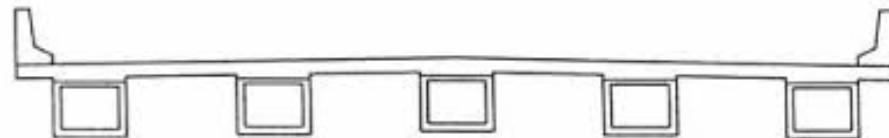
Super Structure Condition Rating Used

$$\text{Deterioration Rate} = \frac{(2014 \text{ Condition Rating}) - 9}{2014 - (\text{Year Built})}$$

$$\text{Remaining Life} = \frac{3 - (2014 \text{ Condition Rating})}{(\text{Average Deterioration Rate})}$$

$$\text{Bridge Life} = 2014 - (\text{Year Built}) + \text{Remaining Life}$$

Bridge Type	Number of Bridges 1960 - 2010	Deterioration Rate (Condition Rating Loss/Year)
Steel I Beam	550	-0.07114
Steel I Girder	1017	-0.08144
P/S Box - Adjacent	1440	-0.08125
P/S Box - Spread	2196	-0.07988
P/S I Beam	1384	-0.08383


All are “similar” with None “Way Out” of Balance

↑ Steel Rolled
Precast Box Spread

Agency Life Cycle Costs – An Example

Precast Spread Box-Beam Bridge

BrKey:	30570
Bridge Type:	P/S, Box Beam (Spread)
County:	Shuylkill
Location:	0.75 mi. N of Exit 107(33)
Year Built:	1969
Spans:	3
Length:	176 ft
Deck Area:	7621 ft ²
Super Cond Rating:	5

Average Precast Box Beam – Spread bridge deterioration rate = -0.07988

$$\text{Remaining Life} = \frac{(3 - 5)}{-0.07988} = 25 \text{ years}$$

$$\text{Bridge Life} = 2014 + 25 - 1969 = 70 \text{ years}$$

Life Cycle Costs

Example Bridge Costs

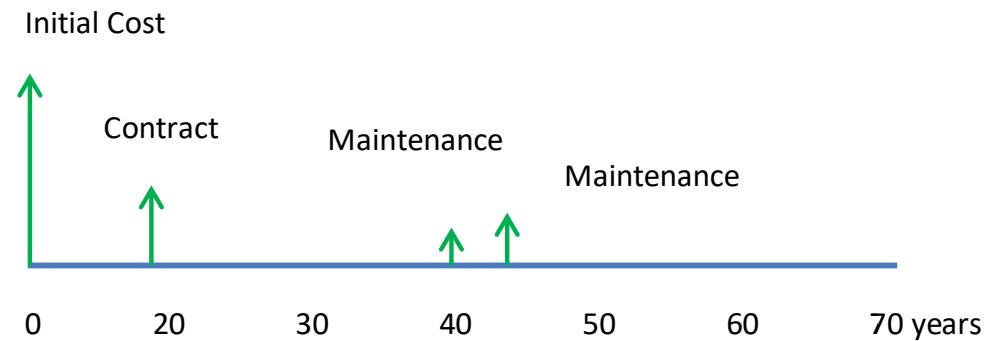
Actual Costs / Years

Initial Cost:	Year = 1969	Cost = \$141475 (\$18.56/ft ²)	Work: Bridge Construction
External Contract:	Year = 1988	Cost = \$58401 (\$7.66/ft ²)	Work: Latex Overlay
Maintenance 1:	Year = 2009	Cost = \$1891 (\$0.25/ft ²)	Work: Repair Concrete Deck
Maintenance 2:	Year = 2013	Cost = \$2510 (\$0.33/ft ²)	Work: Repair Concrete Deck

Equivalent 2014 Costs / Years

Transform the costs to constant 2014 dollars using Construction Cost

ENR Construction Cost Indices

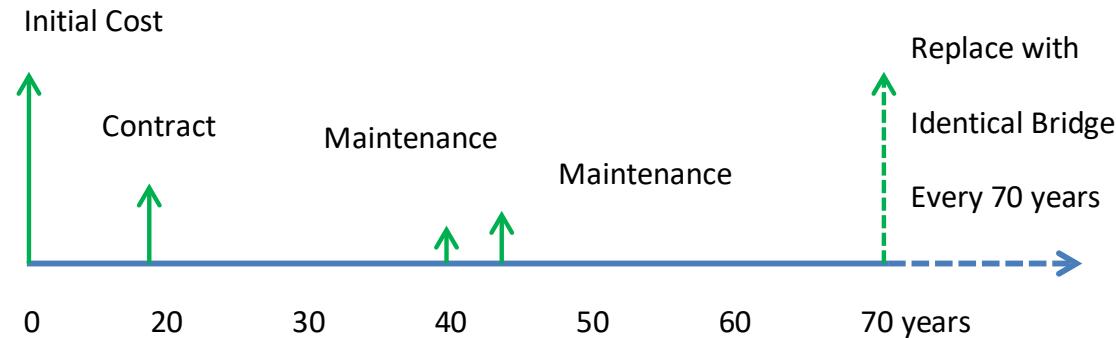

$$2014 \text{ Dollars} = \frac{CCI \ 2014}{CCI \ 19XX} \ 19XX \text{ Dollars}$$

Initial Cost:	Year = 0	Cost = \$18.56/ft ² (9806/1269)	= \$143.45/ft ²
External Contract:	Year = 19	Cost = \$7.66/ft ² (9806/4519)	= \$ 16.63/ft ²
Maintenance 1:	Year = 40	Cost = \$0.25/ft ² (9806/8570)	= \$ 0.28/ft ²
Maintenance 2:	Year = 44	Cost = \$0.33/ft ² (9806/9547)	= \$ 0.34/ft ²

Life Cycle Costs

Example Bridge Life Cycle

OMB Circular A-94 2011 30 yr Discount Rate = 2.3%


Present Value Cost for 1 Cycle

$$PVC = \$143.45 + \$16.63(1.023)^{-19} + \$0.28(1.023)^{-40} + \$0.34(1.023)^{-44} = \$154.49/ft^2$$

Life Cycle Costs

Example Bridge Life Cycle

OMB Circular A-94 2011 30 yr Discount Rate = 2.3%

Present Value Cost for 1 Cycle

$$PVC = \$143.45 + \$16.63(1.023)^{-19} + \$0.28(1.023)^{-40} + \$0.34(1.023)^{-44} = \$154.49/ft^2$$

Perpetual Present Value Cost = Capitalized Cost

$$PPVC = \$154.49 \left[\frac{(1 + 0.023)^{70}}{(1 + 0.023)^{70} - 1} \right] = 1.256(\$154.49) = \$193.97/ft^2$$

With Capitalized Costs, Can Compare Bridges Directly

Life Cycle Cost Analyses

The Steel Plate Girder Bridge Data Base

General Information

Maintenance & Contract Work

Initial & LCC

The full history of the bridge
Location, year built, spans, length, area, geometry, materials
Department and contractor maintenance performed
Initial, perpetual present value, and future maintenance costs

LCC Report

Analysis and Variables Examined in Report

Bridge Life

PPVC/Capitalized Costs

Number of Spans

Bridge Length

PVC Future Costs

Department Maintenance

External Contracts

For Steel Bridges

Curved vs. Straight

Fracture-Critical

Protection (Painted, Weathering, Galvanized)

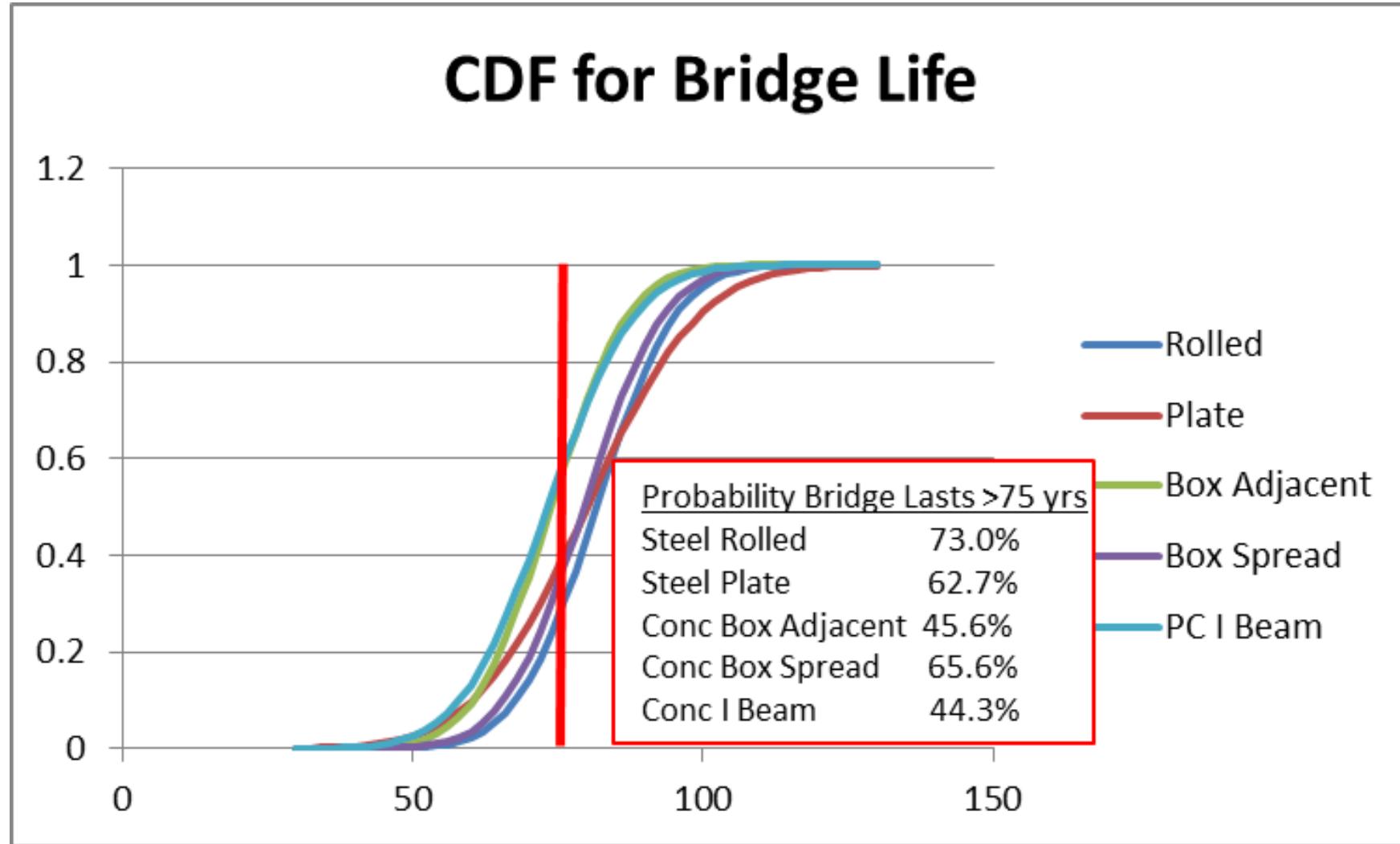
For the entire report:

www.ShortSpanSteelBridges.org

Additional LCC report on Galvanizing:

www.ShortSpanSteelBridges.org

Bridge Life

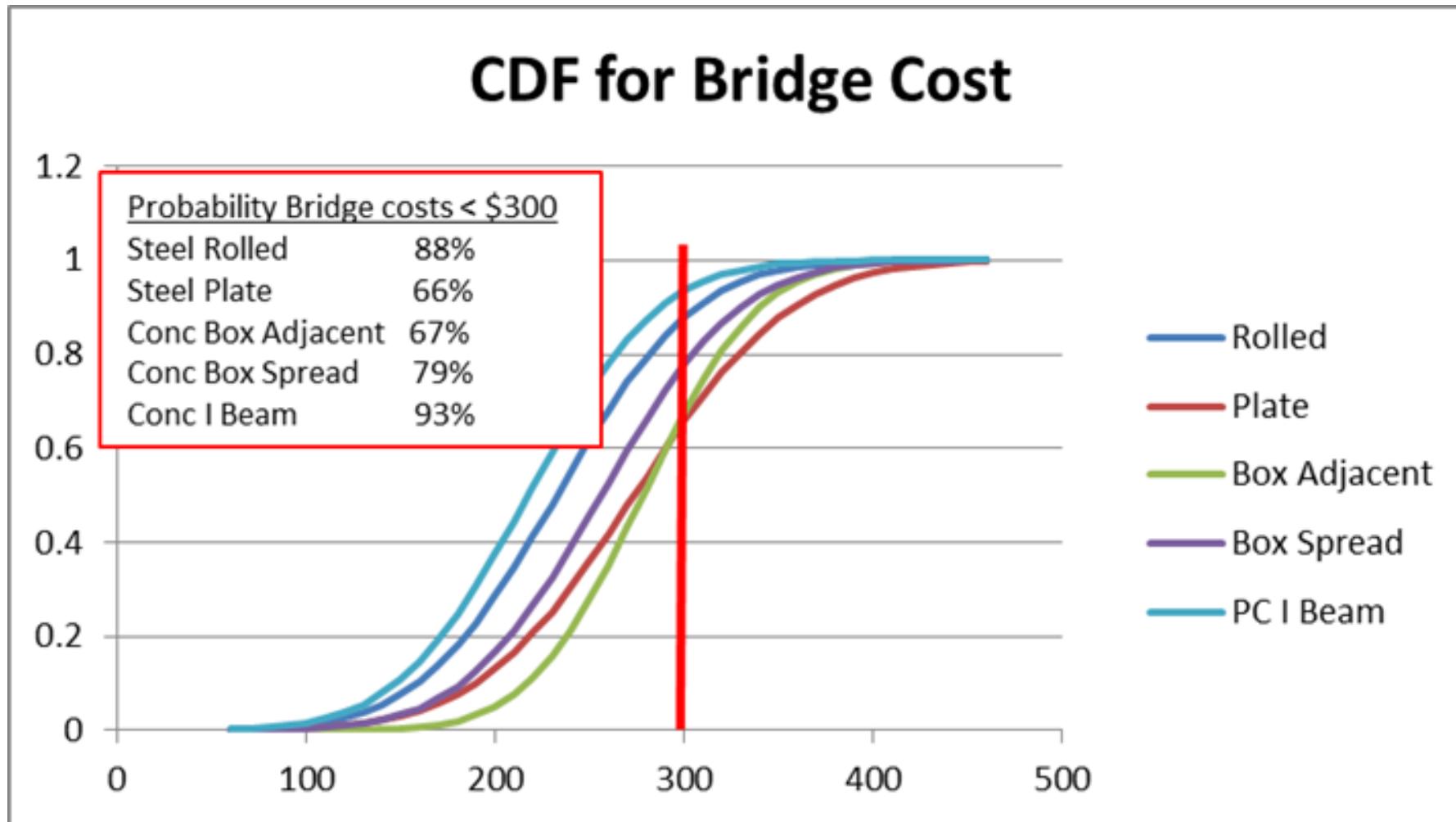

Bridge Type	Number of Bridges in Final LCC Database	Average Year Built	Average Bridge Life (years)
Steel I Beam	82	1981	81.3
Steel I Girder	230	1977	79.2
P/S Box - Adjacent	400	1985	74.0
P/S Box - Spread	581	1984	79.9
P/S I Beam	412	1984	74.5

Steel Rolled
Precast Box - Spread

All are “similar” with None “Way Out” of Balance

Bridge Life

Life Cycle Costs – All Bridges


	# Bridges	PPVC	Initial Cost	Future Cost	Avg Length	Avg # Spans	Avg Year Built	Avg Life
Steel I Beam	54	\$232.78	\$194.78	\$0.42	166	2.19	1980	82
Steel I Girder	144	\$273.71	\$226.10	\$0.21	406	4.07	1976	80
P/S Box - Adjacent	282	\$278.30	\$223.74	\$0.96	89	1.31	1987	74
P/S Box - Spread	397	\$256.11	\$210.65	\$2.06	89	1.56	1986	79
P/S I Beam	309	\$217.50	\$174.10	\$0.20	212	2.43	1985	73

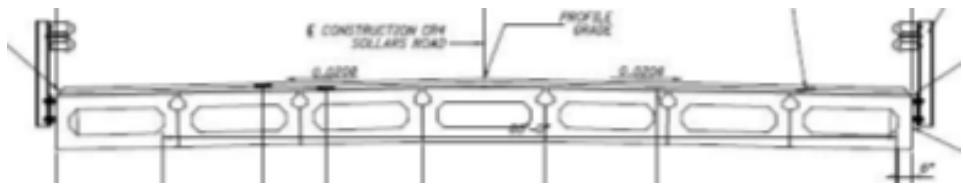
Precast I Beam
Steel Rolled

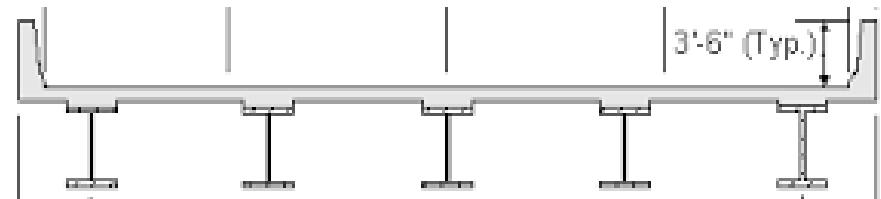
All are “similar” with None “Way Out” of Balance

Capitalized Costs – All Bridges

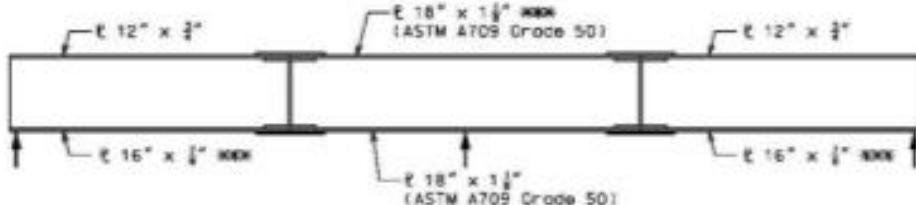
Life Cycle Costs- Length<140 ft

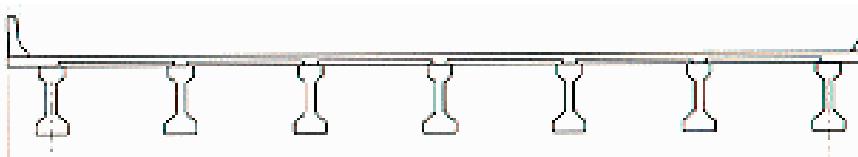
Short Length Bridges
Short Span Steel Bridge Alliance

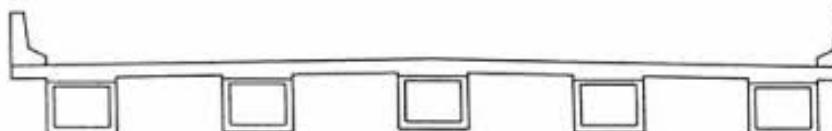

	# Bridges	PPVC	Initial Cost	Future Cost	Avg Length	Avg # Spans	Avg Year Built	Avg Life
Steel I Beam	27	\$266.24	\$222.08	\$0.16	84	1.26	1978	82
Steel I Girder	18	\$311.26	\$257.19	\$0.29	119	1.00	1977	81
P/S Box - Adjacent	240	\$292.38	\$235.03	\$0.95	69	1.09	1987	74
P/S Box - Spread	325	\$272.20	\$225.14	\$2.16	64	1.23	1986	81
P/S I Beam	98	\$281.64	\$231.20	\$0.05	104	1.08	1987	77


Steel Rolled
Precast Box Spread

All are “similar” with None “Way Out” of Balance


Which Type of Bridge is Best?


Precast Box Adjacent

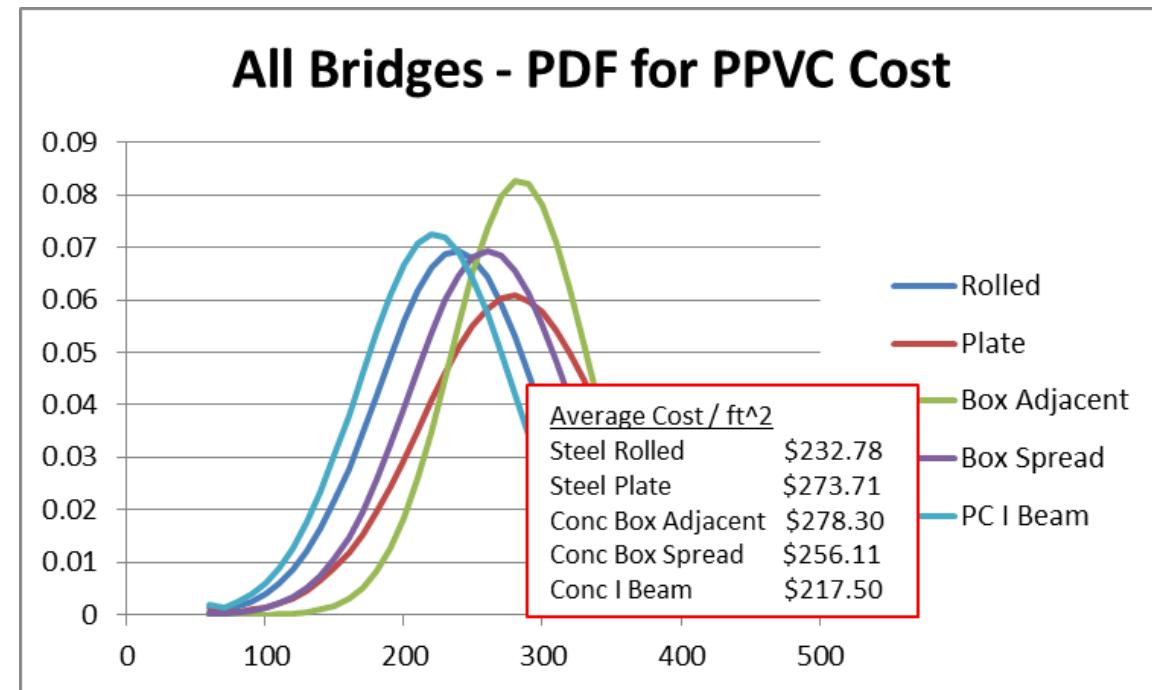

Steel Rolled Beam

Steel Plate Girder

Precast I Beam

Precast Box Spread

Which Type of Bridge is Best?


All are “similar” with None “Way Out” of Balance

Overall Weighted Average PPVC = \$252.40/ft² – Capitalized Costs

All Bridge Types within 14% of
Weighted Average

Standard Deviation Range
\$48.02/ft² - \$65.60/ft²
[COV \approx 20% - 25%]

Any One Type of Bridge May Be
Most Economical for a Given
Bridge Project

There is No One Type of Bridge That Clearly Beats the Others

Summary

Typical Steel & Concrete Bridges are Competitive on First Cost

Typical Steel & Concrete Bridges are Competitive on Life Cycle Costs

Owners Should Consider Both Steel and Concrete
Alternatives for Individual Bridge Projects

Quiz

In a Life Cycle Cost Analysis, the engineer should consider future maintenance only if it is contracted by a third party (no DOT Maintenance Costs Considered)

- a. True
- b. False

False –

All Future Maintenance Costs Should be Considered for the Life Cycle

Quiz

Some of the Cost Advantages in Building Short Span Steel Bridges Are:

- a. Lighter Equipment Required
- b. Lower Cost Bridge Railing Barriers Required
- c. Lighter Abutments May Be Used
- d. Smaller Spans Required for Hydraulic Opening
- e. Less Required Clear Road Width

Quiz

The Short Span Steel Bridge Alliance Claims that Steel Bridges Have Lower Initial and Life Cycle Costs Compared to Concrete Bridges.

- a. True
- b. False

False – the SSSBA Claims

Typical Steel & Concrete Bridges are Competitive on First Cost

Typical Steel & Concrete Bridges are Competitive on Life Cycle Costs