
Practical Approaches to Building Cost-Efficient and Accelerated Short Span Steel Bridges

MidAtlantic Region Quality Assurance Workshop
February 9 - 11, 2026

Dr. Michael G. Barker, PE
University of Wyoming &
SSSBA, Director of Education

Download Presentation Slides

www.ShortSpanSteelBridges.org

Short Span Steel Bridge Alliance – Who We Are

A group of *bridge* and *buried soil structure* industry leaders who have joined together to provide *educational information* on the design and construction of short span steel bridges in installations up to *140 feet in length*.

Common Simple Span Steel Bridge Types

Corrugated Steel Pipe
(Buried Steel Bridge)

Corrugated Steel Plate
(Buried Steel Bridge)

Rolled Beam Shape

Plate Girder

Truss

Press-Brake Tub Girder

Short Span Steel Bridge Alliance – Why We Are

Remove Design Obstacles for Short Span Steel Bridges
[eSPAN140 & eBEAM140 Design Software](#)

Overcome Preconception that Concrete is Always Less Expensive in Short Span
[Initial and Life Cycle Cost Studies](#)

Prefabricated Steel Bridge Systems and Accelerated Bridge Construction
[Case Studies and Alliance Members](#)

Develop and Implement Innovative Steel Bridge Systems
[Press-Brake Tub Girder Bridges & SDCL Construction](#)

Educate Owners, Engineers & Students in Steel Bridges
[Webinars, Presentations, Workshops and On-Line Certificate Programs](#)

Today's Session

eSPAN140 & eBEAM140 Design Tools – *Steel Bridge Design Made Easy*

Bridge Manufacturer Solutions/ABC – *I Need a Bridge, Bring Me One*

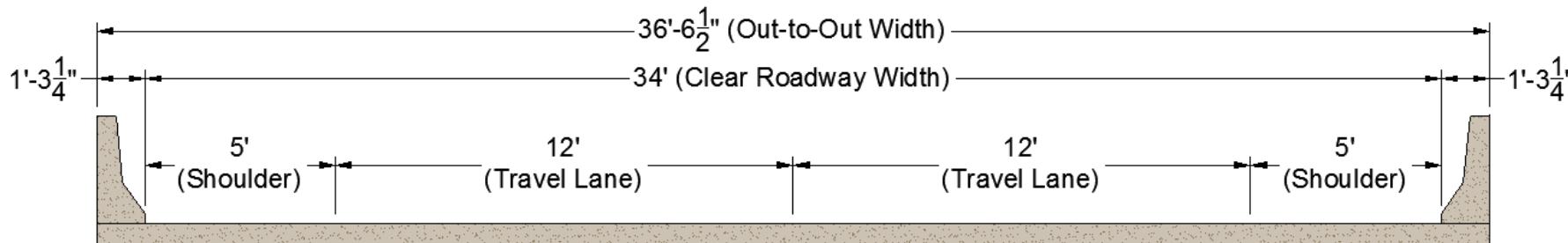
Simple for Dead, Continuous for Live Steel Bridge Construction – *Innovative Design*

Press-Brake Formed Tub Girders – *Innovative Design*

Workshops, Resources & Opportunities Through the Short Span Steel Bridge Alliance

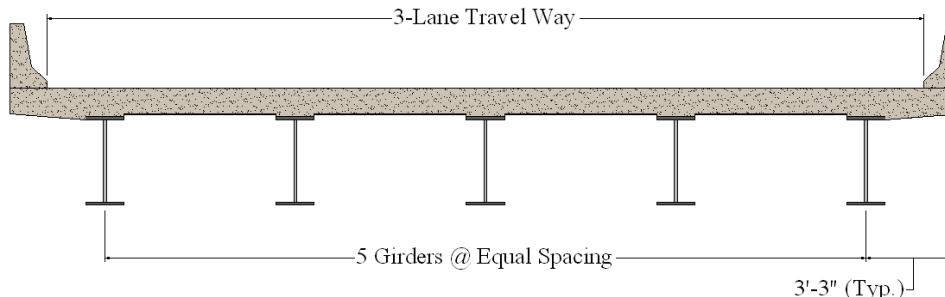
We Only Have Time to Quickly Address These Today:
More Information and Reports at ShortSpanSteelBridges.org

Traditional Fabricated Steel Bridges

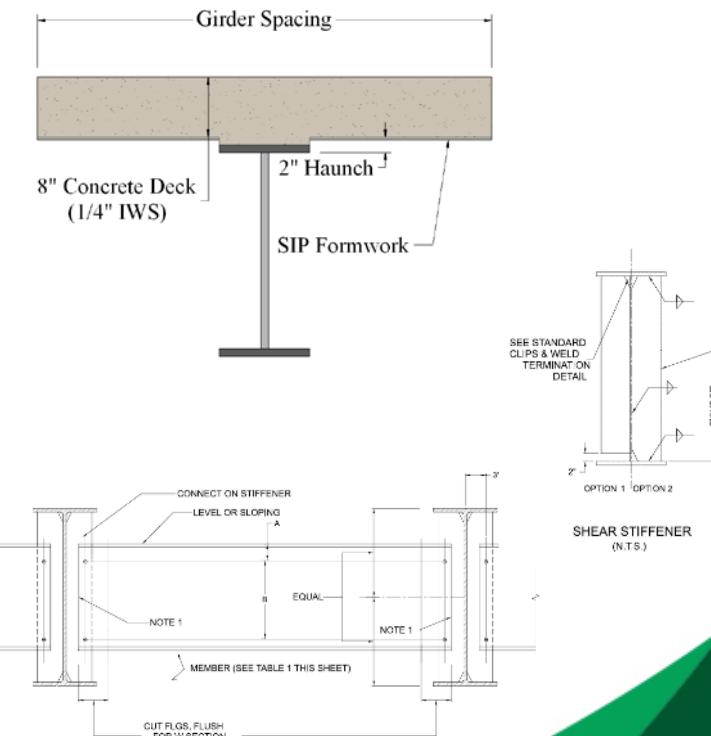
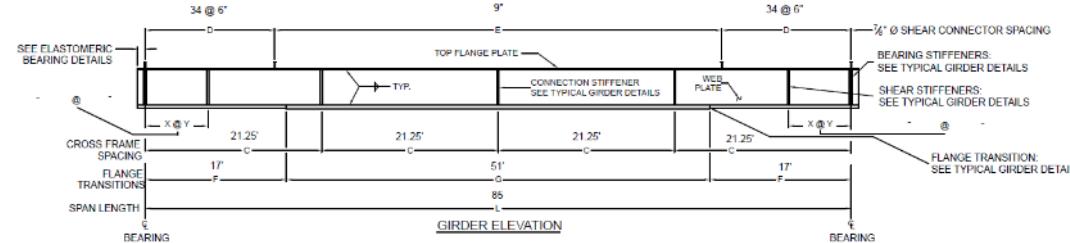

Design Superstructure for Two-Lane, 80 ft Simple Span Bridge

Bridge Need and Basic Information

- Decided by Owner/Engineer:
 - 80 ft Simple Span Composite – Steel Girders
 - Two 12 ft Travel Lanes, ADT = 5600 one direction
 - 34 ft Roadway Width
 - Jersey Barriers (1 ft – 3 $\frac{1}{4}$ in wide)


Need an Initial Design for the Bridge SuperStructure

eSPAN140 - Standard Designs for Short Span Steel Bridges - www.ShortSpanSteelBridges.org



Span lengths 20 ft to 140 ft (in 5 ft increments)

Four girder spacing: 6'-0", 7'-6", 9'-0" and 10'-6",

For each of these increments: Steel girders, Shear stud & stiffener layouts, Welding and fabrication details, Elastomeric bearings, and Concrete deck design

COMPOSITE PLATE GIRDER WITH PARTIALLY STIFFENED WEB - 4 GIRDERS AT 8' 10" GIRDER SPACING, HOMOGENEOUS

eSPAN140 Preliminary Design

Solution Type*	Bridge Span Length								Skew Angle	Overhang Width
	0'	20'	40'	60'	80'	100'	120'	140'		
Rolled Beam (40' to 100')**									+/- 20 degrees	3'3" or less
Homogeneous Plate Girder (60' to 140')**									+/- 20 degrees	3'3" or less
Press Brake Tub Girders (0' to 80')									+/- 20 degrees	3'3" or less
Buried Bridges (all)***									+/- 35 degrees****	N/A

* For bridges outside of this range, standard designs will not appear in your solutions book.

** Standard designs for rolled beam and plate girder solutions are rounded in five (5) foot increments.

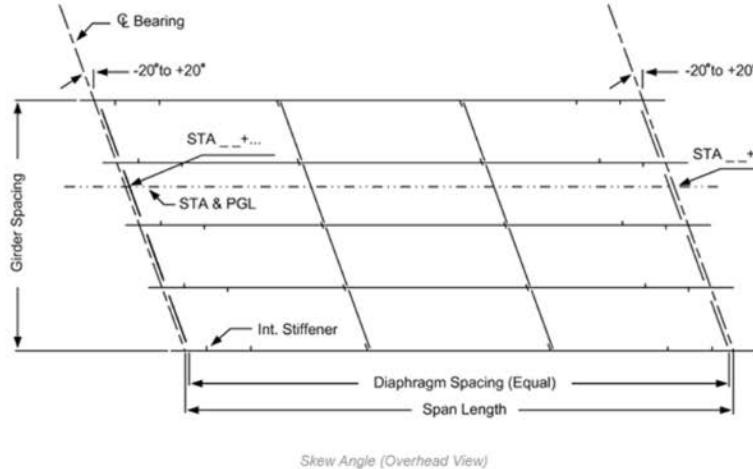
*** Depending on project requirements this solution will require multiple spans.

**** Can be greater if site geometry allows.

***** Can be greater if site geometry allows.

eSPAN140 Preliminary Design

Project Name*
Example 80 ft Simple Span Bridge


Project Status*
Informational Only

City/County*
Laramie

State/Province* Wyoming

Roadway Name
E 800 South

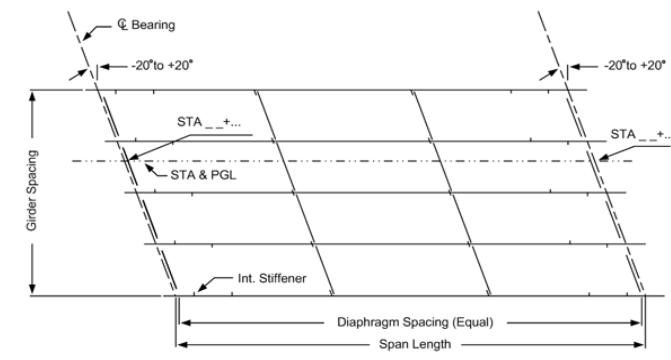
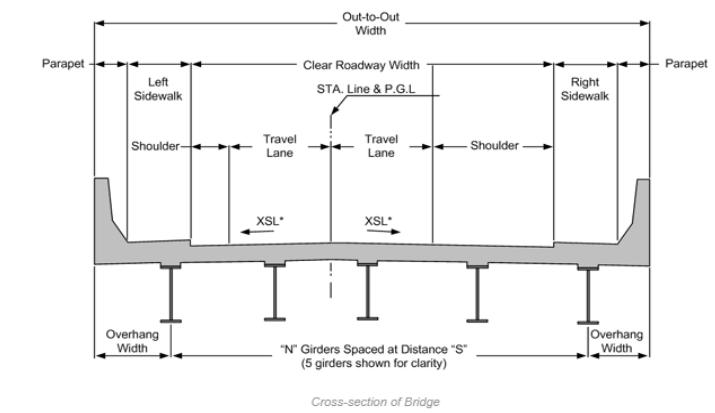
Bridge Span Length* 80 0
Feet Inches

of Striped Traffic Lanes*
2

Roadway Width* 34 0
Feet Inches

Individual Parapet Width 1 3.25
Feet Inches

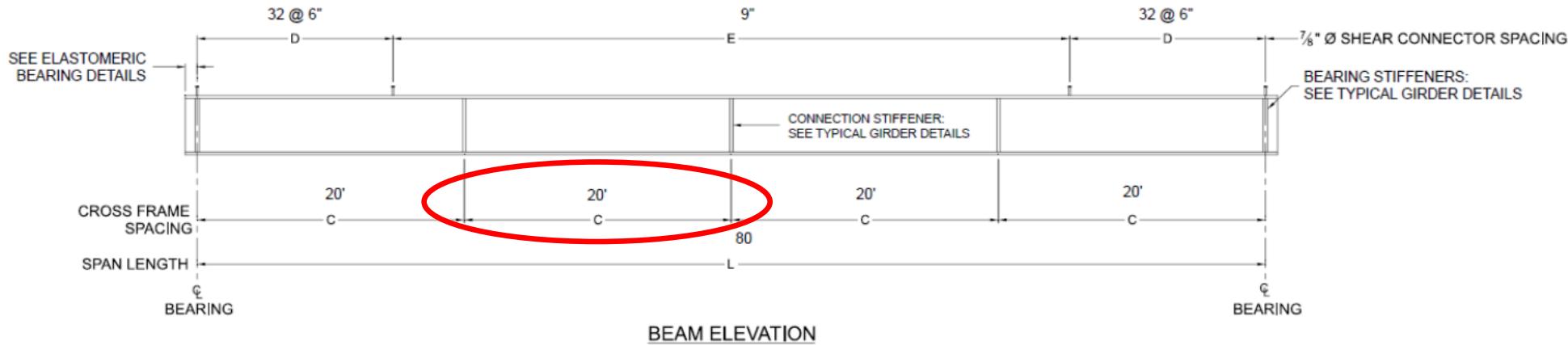
Individual Deck Overhang Width 2 6.25
Feet Inches



Pedestrian Access?

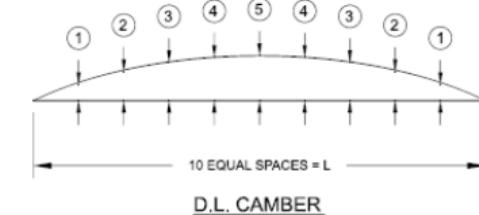
Skew Angle 0
Degrees

Average Daily Traffic Over 2,000

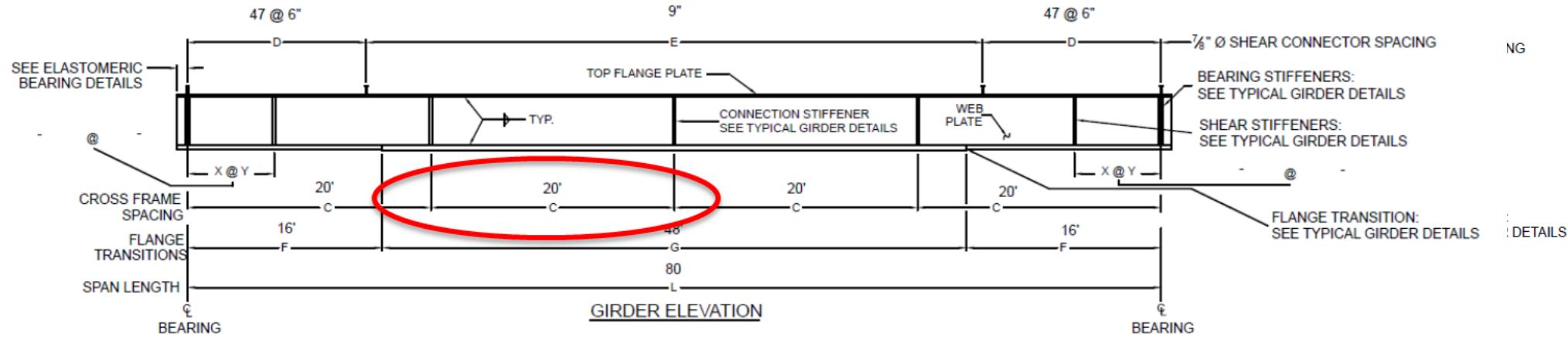
Design Speed 46+ mph


* Required

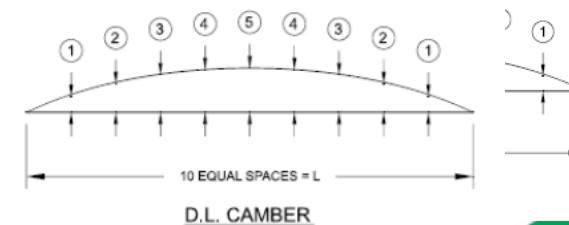
Rolled Beam Recommendation


COMPOSITE ROLLED BEAM WITH PARTIALLY STIFFENED WEB - 4 GIRDERS AT 10' 6" GIRDER SPACING, LIGHTEST WEIGHT

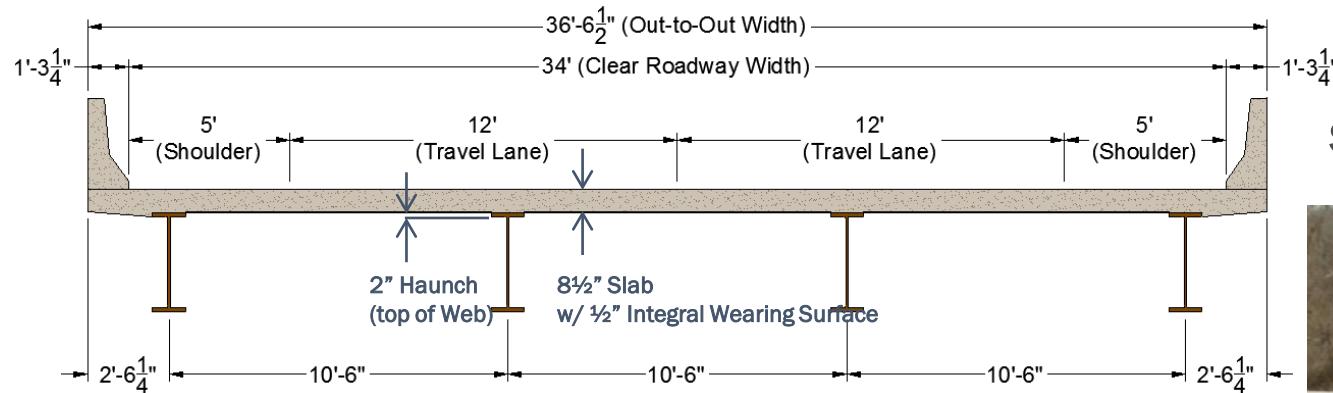
The selected rolled beam section is based on the widest (10'-6") girder spacing used in the development of the standards. The steel industry generally recommends the use of the widest girder spacing possible to reduce the potential number of girder lines for optimum economy.


SPAN (L) - ft	ROLLED BEAM	DIAPHRAGM SPACING (C)	SHEAR CONNECTOR MAX. SPACING		WEIGHT
			D	E	
80	W36x210	20'	32 @ 6"	9"	16,800 lbs

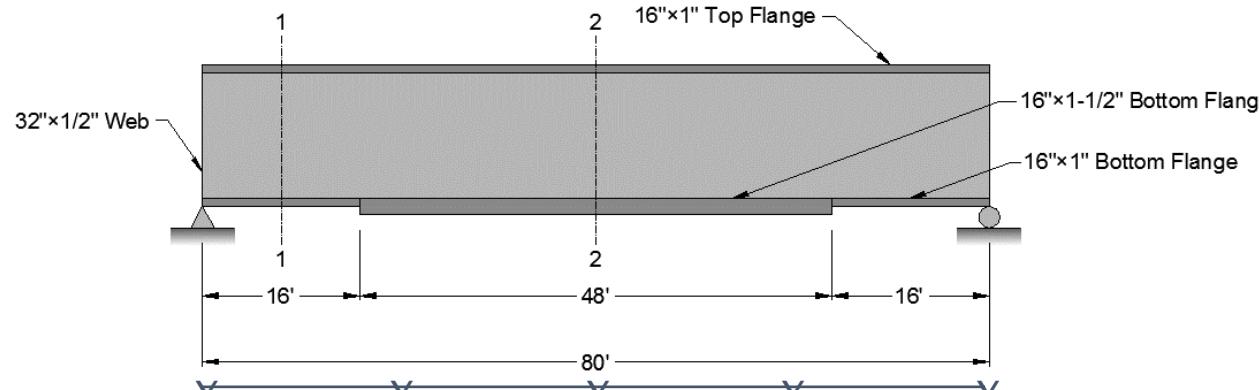
STEEL D.L. CAMBER - in					TOTAL D.L. CAMBER - in				
1	2	3	4	5	1	2	3	4	5
0.178"	0.337"	0.461"	0.540"	0.567"	1.255"	2.375"	3.250"	3.807"	3.997"


Plate Girder Recommendation

COMPOSITE PLATE GIRDER WITH PARTIALLY STIFFENED WEB - 4 GIRDERS AT 10' 6" GIRDER SPACING, HOMOGENEOUS



SPAN (L) - ft	PLATE GIRDERS SIZE						DIAPHRAGM SPACING (C) - ft	SHEAR STIFFENERS		SHEAR CONNECTOR MAX. SPACING		INDIVIDUAL GIRDER WEIGHT	GIRDER WT	
	TOP FLANGE - in	BOTTOM FLANGE (F)		BOTTOM FLANGE (G)		WEB PLATE- in		X (NO. REQ'd)	Y - ft. (SPACING)	D	E			
		PLATE - in	LENGTH - Ft	PLATE - in	LENGTH - Ft			X (NO. REQ'd)	Y - ft. (SPACING)	D	E			
80	16 x 1"	16 x 1"	16'	16 x 1 1/2"	48'	32 x 1/2"	20'	-	-	47 @ 6"	9"	14,373 lbs	lbs	


STEEL D.L. CAMBER - in					TOTAL D.L. CAMBER - in				
1	2	3	4	5	1	2	3	4	5
0.178"	0.334"	0.454"	0.530"	0.557"	1.397"	2.618"	3.554"	4.149"	4.355"

Design for Homogeneous Plate Girder Bridge

Superstructure Design for Two-Lane, 80 ft Simple Span Bridge

Diaphragm Bracing at 20 ft

NEW Short Span Steel Bridge Alliance eBEAM140

Noncomposite and Composite Simple-Span Rolled-Section Steel Bridge Design

Excel Based Rolled Beam Design Software
Version 1.0 - Beta

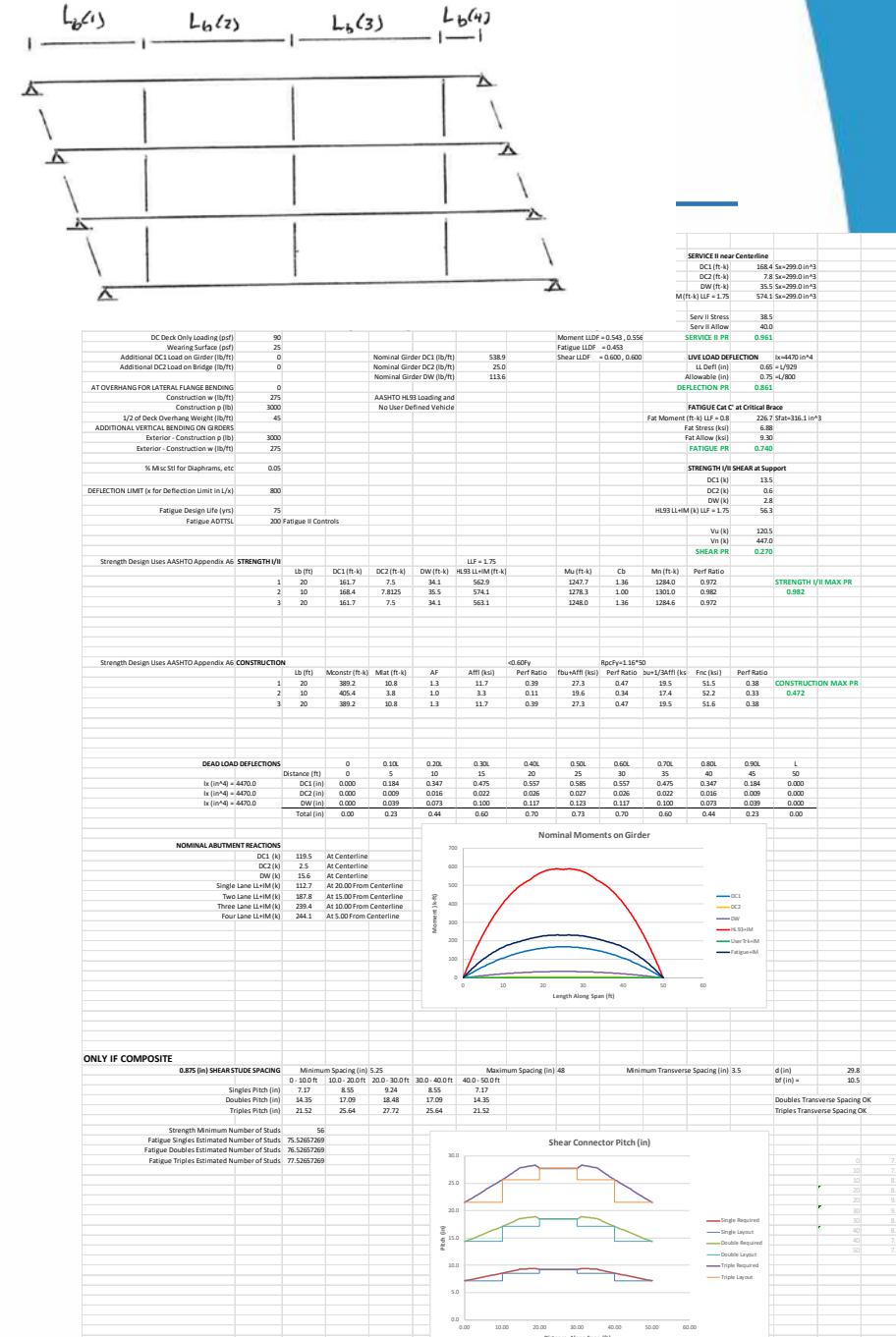
<https://www.shortspansteelbridges.org/ebeam140/>

eBEAM140 Disclaimer: This document has been prepared in accordance with information available to the American Iron and Steel Institute (AISI) and its Short Span Steel Bridge Alliance (SSSBA) program, at the time of preparation. While it is believed to reasonably reflect the present state of knowledge as to the subject, it has not been prepared for conventional use as an engineering or construction document and should not be used or relied upon for any specific application without competent professional examination and verification of its accuracy, suitability, and applicability by a licensed engineer, architect or other professional. AISI and the SSSBA disclaim any liability arising from information provided by others or from the unauthorized use of the information contained in this document, and do not accept any obligation to issue supplements or corrections in the event of errors being discovered or advances being made in the techniques discussed in the document.

Start With Demonstration

NonComposite Bridge

- 52 ft Length
- Two 12 ft Lanes
- 6 Girders at 5'-6" Spacing
- Overhang 1' - 3"
- Barriers 1' - 0" (50 lb/ft - 50% on Exterior Girder)
- Roadway Width = 28 ft (4 ft of shoulder)
- Bridge Width 30 ft
- Diaphragm (Centerline) at 26 ft
- Unbraced
- Corrugated Metal Deck & Gravel (80 psf)


- No Additional DC1 or DC2 Loading
- No Wearing Surface
- No Construction Load (No Lateral Flange)
- Misc Steel of 5%
- 50 ksi Steel, L/D limit 30, Min d = 12
- L/800 Deflection Limit
- Compression Flange not Braced
- Use AASHTO Appendix A6
- 75 Year Design Life & ADTT_{SL} = 200
 - Fatigue II - Finite Life
- No User Defined Vehicle

W36x135 Strength | PR = 0.993

Design Software

Excel Based Rolled Beam Design Software

- NonComposite & Composite Design
- 33, 36, 50, 65 or 70 ksi Steel
- Bridge Layout
- Diaphragm Variable Along Span
- Any Decking: Wood, Grid, CMD, Noncomposite Concrete, Composite Concrete
- Vehicular Loading: AASHTO HL93 & User Defined Vehicle (i.e., U-80)
- User Defined Design Characteristics
- “What-If” Analysis

Design Software

Excel Based Rolled Beam Design Software

- Allows User to Investigate Alternatives to
 - Diaphragm Spacing
 - Lightest Weight Solution
 - Other Readily Available Sections

ENTER W SECTION FOR MORE INFORMATION						Weight (lb/ft)	LIST OF ALL W SHAPES RANKED FROM STRENGTH I, SERVICE II & CONSTRUCTION						
OVERALL PERFORMANCE FOR W36X135						135	Top 20 That Meet Min Depth, Max Depth & W40 & W44 Limits						
Strength I/II	Service II	Construction	Fatigue	Deflection	Overall	Shape	Strength I/II	Service II	Construction	Fatigue	Deflection	Overall	
PR 0.993	PR 0.727	PR 0.161	PR 0.599	PR 0.763	PR 0.993	W36X135	0.99	0.73	0.16	0.60	0.76	0.99	
In Lb # 1	At Centerline	In Lb # 1	At Critical Brace	At Centerline Equal to L/1049	Strength I/II	W33X141	0.92	0.71	0.15	0.58	0.80	0.92	
PERFORMANCE BY UNBRACED LENGTH FOR W36X135						W27X146	0.79	0.77	0.14	0.62	1.05	1.05	
Inbraced Length 1	Unbraced Length (ft) 26	Lb Range 0 - 26 ft	PR 0.993	Mn/My 0.778	Cb 1.255	W30X148	0.95	0.73	0.16	0.58	0.89	0.95	
2	26	26 - 52 ft	0.993	0.778	1.256	W40X149	0.90	0.62	0.15	0.51	0.61	0.90	
						W36X150	0.81	0.64	0.13	0.52	0.66	0.81	
						W33X152	0.81	0.66	0.14	0.53	0.73	0.81	
						W36X160	0.73	0.59	0.12	0.48	0.61	0.73	
						W27X161	0.71	0.70	0.13	0.55	0.94	0.94	
						W24X162	0.77	0.78	0.14	0.60	1.15	1.15	
						W40X167	0.70	0.54	0.12	0.43	0.51	0.70	
						W33X169	0.69	0.59	0.12	0.46	0.64	0.69	
						W36X170	0.66	0.56	0.11	0.44	0.57	0.66	
						W30X173	0.59	0.60	0.11	0.47	0.72	0.72	
						W24X176	0.70	0.72	0.13	0.54	1.05	1.05	
						W27X178	0.63	0.64	0.12	0.50	0.85	0.85	
						W36X182	0.61	0.52	0.11	0.41	0.53	0.61	
						W40X183	0.59	0.48	0.10	0.38	0.45	0.59	
						W30X191	0.53	0.54	0.10	0.42	0.65	0.65	
						W24X192	0.63	0.66	0.12	0.50	0.95	0.95	

Design Software

Excel Based Rolled Beam Design Software

○ Design Summary

- All Superstructure Design Results Specific to Limit States, Unbraced Lengths, etc.
- Dead Load Deflections for Camber
- Abutment Reaction Cases for Multi-Lane
- If Composite: Strength and Fatigue Stud Design

W44	SERVICE II near Centerline	
	DC1 (ft-k)	183.1 Sx=439.0 in^3
	DC2 (ft-k)	8.5 Sx=439.0 in^3
	DW (ft-k)	0.0 Sx=439.0 in^3
	HL93 LL+IM (ft-k)	670.5 Sx=439.0 in^3
	Serv II Stress	29.1
Lane	Serv II Allow	40.0
	SERVICE II PR	0.727
	LIVE LOAD DEFLECTION	Ix=7800 in^4
	LL Defl (in)	0.60 = L/1049
	Allowable (in)	0.78 = L/800
	DEFLECTION PR	0.763
	FATIGUE Cat C' at Critical Brace	
	Fat Moment (ft-k) LLF = 0.8	265.8 Sfat=458.6 in^3
	Fat Stress (ksi)	5.57
	Fat Allow (ksi)	9.30
	FATIGUE PR	0.599
	STRENGTH I/II SHEAR at Support	
	DC1 (k)	14.1
	DC2 (k)	0.7
	DW (k)	0.0
	HL93 LL+IM (k) LLF = 1.75	60.6
	Vu (k)	124.5
	Vn (k)	591.9
	SHEAR PR	0.210

Strength Design Uses AASHTO Appendix A6		STRENGTH I/II											
		Lb (ft)	DC1 (ft-k)	DC2 (ft-k)	DW (ft-k)	HL93 LL+IM (ft-k)							
1	26	183.1	8.45	0.0	670.4			1412.6	1.26	1422.9	0.993		
2	26	183.1	8.45	0.0	670.5			1412.9	1.26	1423.3	0.993		STRENGTH I/II MAX PR 0.993

Strength Design Uses AASHTO Appendix A6		CONSTRUCTION											
		Lb (ft)	Mconstr (ft-k)	Mlat (ft-k)	AF	Affl (ksi)	Perf Ratio	f _{bu} +Affl (ksi)	Perf Ratio	b _u +1/3Affl (ks)	Fnc (ksi)	Perf Ratio	
1	26	228.9	0.0	1.0	0.0	0.00	0.00	6.3	0.13	6.3	38.9	0.16	CONSTRUCTION MAX PR 0.161
2	26	228.9	0.0	1.0	0.0	0.00	0.00	6.3	0.13	6.3	38.9	0.16	

NOMINAL ABUTMENT REACTIONS		
DC1 (k)	84.5	At Centerline
DC2 (k)	2.6	At Centerline
DW (k)	0.0	At Centerline
Single Lane LL+IM (k)	114.3	At 9.00 From Centerline
Two Lane LL+IM (k)	190.4	At 4.00 From Centerline

Modify Demonstration

NonComposite Bridge

- 52 ft Length
- Two 12 ft Lanes
- 6 Girders at 5'-6" Spacing
- Overhang 1' - 3"
- Barriers 1' - 0" (50 lb/ft - 50% on Exterior Girder)
- Roadway Width = 28 ft (4 ft of shoulder)
- Bridge Width 30 ft
- Diaphragm (Centerline) at 26 ft
- Unbraced
- Corrugated Metal Deck & Gravel (80 psf)

- No Additional DC1 or DC2 Loading
- No Wearing Surface
- No Construction Load (No Lateral Flange)
- Misc Steel of 5%
- 50 ksi Steel, L/D limit 30, Min d = 12
- L/800 Deflection Limit
- Compression Flange not Braced
- Use AASHTO Appendix A6
- 75 Year Design Life & ADTT_{SL} = 200
 - Fatigue II - Finite Life
- No User Defined Vehicle

W36x135 Strength | PR = 0.993

Demonstration: 52 ft Span, CMD/Gravel, 6 Girders @ 5.5 ft

NonComposite Bridge: W36 x 135

- What if add additional diaphragm: $L_b = 19, 14, 19$ ft

ENTER W SECTION FOR MORE INFORMATION						Weight (lb/ft)
W36X135						135
NonComposite						
OVERALL PERFORMANCE FOR W36X135						
Strength I/II	Service II	Construction	Fatigue	Deflection	Overall	
PR	PR	PR	PR	PR	PR	
0.993	0.727	0.161	0.599	0.763	0.993	
In Lb #	At Centerline	In Lb #	At Critical Brace	At Centerline Equal to	Strength I/II	
1		1		L/1049		
PERFORMANCE BY UNBRACED LENGTH FOR W36X135						
Strength I/II						
Inbraced Length	Unbraced Length (ft)	Lb Range	PR	Mn/My	Cb	
1	26	0 - 26 ft	0.993	0.778	1.255	
2	26	26 - 52 ft	0.993	0.778	1.256	

ENTER W SECTION FOR MORE INFORMATION						Weight (lb/ft)
W33X118						118
NonComposite						
OVERALL PERFORMANCE FOR W33X118						
Strength I/II	Service II	Construction	Fatigue	Deflection	Overall	
PR	PR	PR	PR	PR	PR	
0.981	0.883	0.155	0.703	1.009	1.009	
In Lb #	At Centerline	In Lb #	At Critical Brace	At Centerline Equal to	Strength I/II	Deflection
2		2		L/793		
PERFORMANCE BY UNBRACED LENGTH FOR W33X118						
Strength I/II						
Inbraced Length	Unbraced Length (ft)	Lb Range	PR	Mn/My	Cb	
1	19	0 - 19 ft	0.781	1.139	1.391	
2	14	19 - 33 ft	0.981	0.957	1.005	
3	19	33 - 52 ft	0.781	1.140	1.392	

**W33x118 – 5400 lbs Girder Steel Saved
But Additional Diaphragm
Deflection = L/793**

Demonstration: 52 ft Span, CMD/Gravel, 6 Girders @ 5.5 ft

NonComposite Bridge: W36 x 135

- What if compression flange braced: $L_b = 0$ Corrugated Metal Decking

ENTER W SECTION FOR MORE INFORMATION						Weight (lb/ft)
W36X135	NonComposite			135		
OVERALL PERFORMANCE FOR W36X135						
Strength I/II	Service II	Construction	Fatigue	Deflection	Overall	
PR	PR	PR	PR	PR	PR	
0.993	0.727	0.161	0.599	0.763	0.993	
In Lb #	At Centerline	In Lb #	At Critical Brace	At Centerline Equal to	Strength I/II	
1		1		L/1049		
PERFORMANCE BY UNBRACED LENGTH FOR W36X135						
		Strength I/II				
Inbraced Length	Unbraced Length (ft)	Lb Range	PR	Mn/My	Cb	
1	26	0 - 26 ft	0.993	0.778	1.255	
2	26	26 - 52 ft	0.993	0.778	1.256	

ENTER W SECTION FOR MORE INFORMATION						Weight (lb/ft)
W30X116	NonComposite					116
OVERALL PERFORMANCE FOR W30X116						
Strength I/II	Service II	Construction	Fatigue	Deflection	Overall	
PR	PR	PR	PR	PR	PR	
0.892	0.963	0.161	0.788	1.207	1.207	
In Lb #	At Centerline	In Lb #	At Critical Brace	At Centerline Equal to	Strength I/II	
2		1		L/663		
PERFORMANCE BY UNBRACED LENGTH FOR W30X116						
		Strength I/II				
Compression Flange Laterally Braced for Final State						
Inbraced Length	Unbraced Length (ft)	Lb Range	PR	Mn/My	Cb	
1	26	0 - 26 ft	0.892	1.149	1.255	
2	26	26 - 52 ft	0.892	1.149	1.256	

**W30x116 – 6000 lbs Girder Steel Saved
Deflection = L/663**

Another Demonstration

Composite Bridge

- 62 ft Length
- Two 12 ft Lanes
- 4 Girders at 9'-0" Spacing
- Overhang 2' - 0"
- Barriers 1' - 6" (250 lb/ft - 50% on Exterior Girder)
- Roadway Width = 28 ft (4 ft of shoulder)
- Bridge Width 31 ft
- Diaphragms at 21 ft & 41 ft
- 8" Structural Deck, $\frac{1}{2}$ " Sacrificial, 2" Haunch
- 2" Stay-in-Place Forms (15 psf)
- 7/8" Shear Studs; $f'_c = 4000$ psi

- Additional DC1 Loading = 40 lb/ft
 - 100% on Girder
- 25 lb/ft² Wearing Surface
- Construction Load ($w = 275$ lb/ft & $p = 3000$ lb)
- Misc Steel of 5%
- 50 ksi Steel, L/D limit 30, Min d = 12
- L/800 Deflection Limit
- Compression Flange not Braced - Construction
- Use AASHTO Appendix A6
- 75 Year Design Life & ADTT_{SL} = 1000
 - Fatigue I - Infinite Life
- No User Defined Vehicle

W36x135 Fatigue PR = 0.961

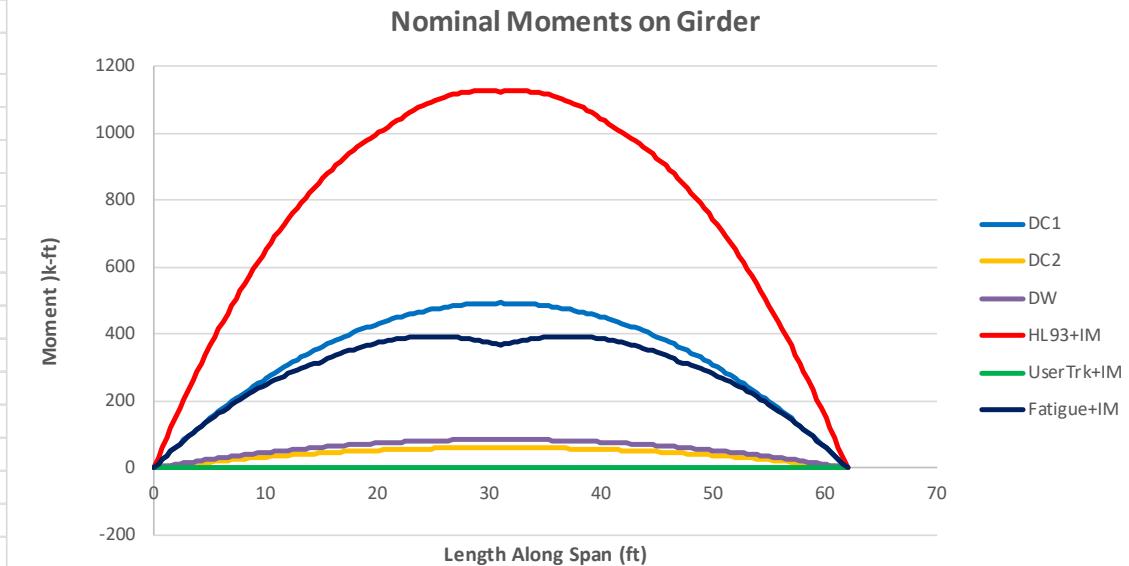
Demonstration: 62 ft Span, 8" Deck w/SIP, 4 Girders @ 9 ft

Composite Bridge

W36X135	Composite	Consider W40 & W44 Beams?	Yes	Minimum Depth Beam W12	Maximum Depth Beam W44	SERVICE II near Centerline	
Overall PR = 0.961 - Fatigue							
Yield Strength (ksi)	50		L/D Limited to 25			DC1 (ft-k) 492.3 Sx=439.0 in^3	
Bridge Length (ft)	62	Bridge Width (ft)	31.00			DC2 (ft-k) 60.1 S3n=600.0 in^3	
Girder Spacing (ft)	9	Roadway Width (ft)	28.00			DW (ft-k) 84.1 S3n=600.0 in^3	
Number of Girders	4	Shoulders (ft) each side - Double for One Sided	2.00			HL93 LL+IM (ft-k) 1093.4 Sn=675.0 in^3	
Overhang (22.2% of Girder Spacing) (ft)	2	2 Striped Lanes and 2 Design Lanes					
Barrier Width (ft)	1.5			Lateral Distribution Factors	Serv II Stress	41.6	
Barrier Load on Girder (lb/ft)	125	8 in Structural Deck with 2 in SIP Forms			Single Lane/Multi-Lane	Serv II Allow	47.5
DC Deck Only Loading (psf)	106.25		Deck f'c (psi)	4000	Moment LLDF = 0.660, 0.767	SERVICE II PR 0.876	
Wearing Surface (psf)	25		Haunch from Top of Web (in)	2	Fatigue LLDF = 0.550		
Additional DC1 Load on Girder (lb/ft)	40		Nominal Girder DC1 (lb/ft)	1024.6	Shear LLDF = 0.720, 0.884	LIVE LOAD DEFLECTION In=21650.2 in^4	
Additional DC2 Load on Bridge (lb/ft)	0		Nominal Girder DC2 (lb/ft)	125.0		LL Defl (in) 0.57 = L/1295	
			Nominal Girder DW (lb/ft)	175.0		Allowable (in) 0.93 =L/800	
AT OVERHANG FOR LATERAL FLANGE BENDING	0					DEFLECTION PR 0.618	
Construction w (lb/ft)	275	AASHTO HL93 Loading and					
Construction p (lb)	3000	No User Defined Vehicle				FATIGUE Cat C' at Critical Brace	
1/2 of Deck Overhang Weight (lb/ft)	108.75				Fat Moment (ft-k) LLF = 1.75	380.0 Sfat=692.0 in^3	
ADDITIONAL VERTICAL BENDING ON GIRDERS					Fat Stress (ksi)	11.53	
Exterior - Construction p (lb)	3000				Fat Allow (ksi)	12.00	
Exterior - Construction w (lb/ft)	275				FATIGUE PR 0.961		
% Misc Stl for Diaphragms, etc	5%				STRENGTH I/II SHEAR at Support		
DEFLECTION LIMIT (x for Deflection Limit in L/x)	800				DC1 (k)	31.8	
Fatigue Design Life (yrs)	75		179298.4375		DC2 (k)	3.9	
Fatigue ADTTS	1000 Fatigue I Controls				DW (k)	5.4	
					HL93 LL+IM (k) LLF = 1.75	89.4	
					Vu (k)	209.2	
					Vn (k)	591.9	
					SHEAR PR 0.353		

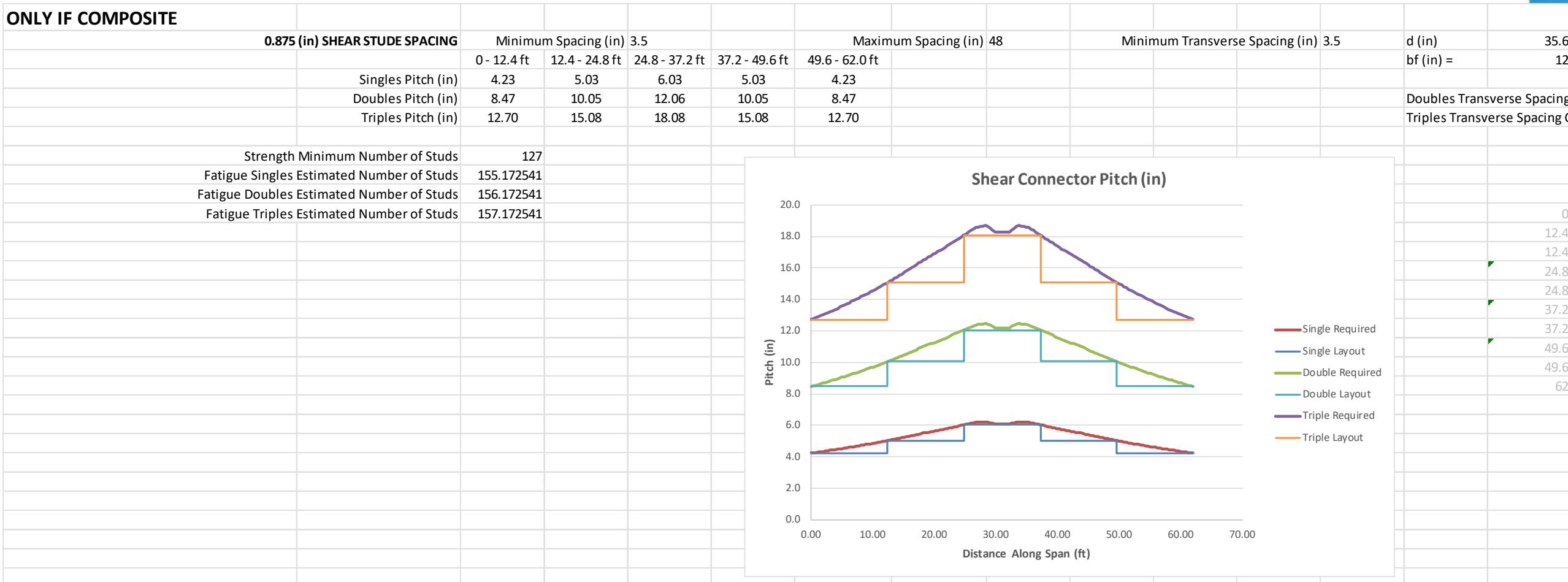
Demonstration: 62 ft Span, 8" Deck w/SIP, 4 Girders @ 9 ft

Composite Bridge


	STRENGTH I/II	Compression Flange Laterally Braced for F						LLF = 1.75	Mu (ft-k)	Cb	Mn (ft-k)	Perf Ratio	STRENGTH I/II MAX PR
		Lb (ft)	DC1 (ft-k)	DC2 (ft-k)	DW (ft-k)	HL93 LL+IM (ft-k)							
1	21	441.1	53.8125	75.3	1000.4				2482.4	1.42	3444.0	0.721	0.793
	20	492.3	60.0625	84.1	1093.4				2730.1	1.01	3444.0	0.793	
	21	441.1	53.8125	75.3	1000.7				2482.8	1.43	3444.0	0.721	
Strength Design Uses AASHTO Appendix A6 CONSTRUCTION													
1	Lb (ft)	Mconstr (ft-k)	Mlat (ft-k)	AF	Affl (ksi)	<0.60Fy		RpcFy=1.16*50		Fnc (ksi)	Perf Ratio	CONSTRUCTION MAX PR	
	21	791.4	21.6	1.4	18.6	0.62	40.2	0.80	27.8		0.50		
	20	883.3	19.9	1.8	23.2	0.77	47.4	0.95	31.9		0.78		
2	21	791.4	21.6	1.4	18.6	0.62	40.2	0.80	27.8		0.50		
	20	883.3	19.9	1.8	23.2	0.77	47.4	0.95	31.9		0.78		
	21	791.4	21.6	1.4	18.6	0.62	40.2	0.80	27.8		0.50		
DEAD LOAD DEFLECTIONS (Max Loaded Girder)													
Ix (in^4) = 7800.0	0	0.10L	0.20L	0.30L	0.40L	0.50L	0.60L	0.70L	0.80L	0.90L	L		
	Distance (ft)	0	6.2	12.4	18.6	24.8	31	37.2	43.4	49.6	55.8	62	
	DC1 (in)	0.000	0.473	0.894	1.224	1.434	1.506	1.434	1.224	0.894	0.473	0.000	
I3n (in^4) = 15409.5	DC2 (in)	0.000	0.029	0.055	0.076	0.089	0.093	0.089	0.076	0.055	0.029	0.000	
	DW (in)	0.000	0.041	0.077	0.106	0.124	0.130	0.124	0.106	0.077	0.041	0.000	
	Total (in)	0.00	0.54	1.03	1.41	1.65	1.73	1.65	1.41	1.03	0.54	0.00	

Demonstration: 62 ft Span, 8" Deck w/SIP, 4 Girders @ 9 ft

Composite Bridge


NOMINAL ABUTMENT REACTIONS

DC1 (k)	123.3	At Centerline
DC2 (k)	15.5	At Centerline
DW (k)	21.7	At Centerline
Single Lane LL+IM (k)	121.4	At 9.00 From Centerline
Two Lane LL+IM (k)	202.4	At 4.00 From Centerline

Demonstration: 62 ft Span, 8" Deck w/SIP, 4 Girders @ 9 ft

Composite Bridge – Shear Studs

eBEAM140 Summary

Rolled Shape Bridge Design: Composite & NonComposite

- User Manual & Examples
- Released on www.ShortSpanSteelBridges.org September 2025

<https://www.shortspansteelbridges.org/ebeam140/>

Plate Girder Bridge Design in 2026

SOON Short Span Steel Bridge Alliance ePLATE140

Noncomposite and Composite Simple-Span Plate-Girder Steel Bridge Design

Excel Based Rolled Beam Design Software Version 1.0 - Beta

eBEAM140 Disclaimer: This document has been prepared in accordance with information available to the American Iron and Steel Institute (AISI) and the Short Span Steel Bridge Alliance (SSSBA) program, at the time of publication. It is believed to reasonably reflect the present state of knowledge and is intended for conventional use as an engineering tool. It should not be relied upon for any specific verification of its accuracy, or other professional. AISI and by others or from the unauthorized do not accept any obligation to make any supplements or corrections in the event of errors being discovered or advances being made in the techniques discussed in the document.

SIMILAR

ePLATE140 Design Software - 2026

Excel Based Rolled Beam Design Software

- Allows User to Investigate Alternatives to
 - Diaphragm Spacing
 - Lightest Weight Solution
 - Other Readily Available Flanges & Webs

Target L/D:

Target L/D – 2"

Target L/D

Target L/D + 2"

Target L/D + 4"

Target L/D + 6""

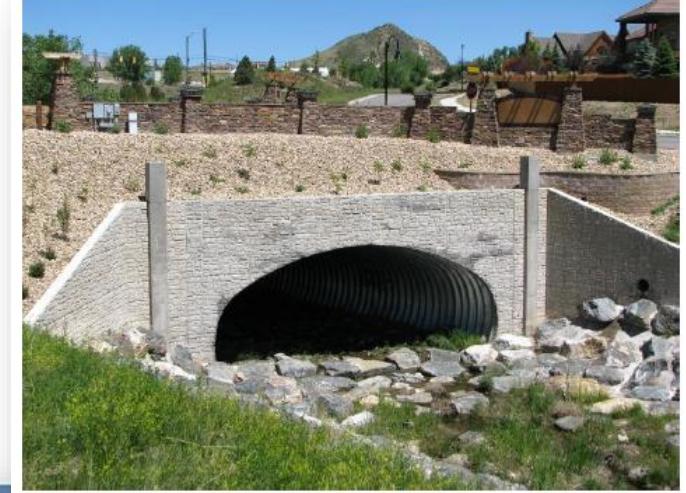
5100 possible design combinations for 5 different Web Depths
User Specified Solution

ENTER SECTION FOR MORE INFORMATION						LIST OF GIRDERS RANKED FROM STRENGTH I, SERVICE II & CONSTRUCTION												
bfc	tfc	D	tw	bft	tft	Weight (lb/ft)	Total Wt (tons)											
13.00	0.750	38.00	0.500	17.00	0.750	141	22.6											
OVERALL PERFORMANCE FOR TF:13 x 0.75 Web:38 x 0.5 BF:17 x 0.75																		
Strength I/II PR 0.917	Service II PR 0.973	Construction PR 0.933	Fatigue PR 0.703	Deflection PR 0.807		Overall PR 0.973	Meets Reqrments for A6?											
In Lb # 3	At Centerline	In Lb # 2	At Critical Brace	At Centerline Equal to L/992		Service II Yes	Construction Uses A6											
PERFORMANCE BY UNBRACED LENGTH FOR TF:13 x 0.75 Web:38 x 0.5 BF:17 x 0.75																		
Compression Flange Laterally Braced for Final State			Strength I/II				Overall											
Unbraced Length	Unbraced Length (ft)	Lb Range	PR	Mn/My	Cb		Shape	Strength I/II	Service II	Construction	Fatigue	Deflection	Overall	Total Wt				
1	20	0 - 20 ft	0.703	1.995	1.509		PR	PR	PR	PR	PR	PR	PR	PR	PR	PR	PR	
2	20	20 - 40 ft	0.917	1.995	1.052		TF:13 x 0.75 Web:38 x 0.5 BF:17 x 0.75	0.92	0.97	0.93	0.70	0.81	0.97	22.6				
3	20	40 - 60 ft	0.917	1.995	1.052		TF:13 x 0.75 Web:38 x 0.5 BF:13 x 1	0.91	0.97	0.93	0.69	0.80	0.97	22.7				
4	20	60 - 80 ft	0.703	1.995	1.509		TF:14 x 0.75 Web:36 x 0.5 BF:18 x 0.75	0.95	0.99	0.87	0.72	0.87	0.99	22.9				
							TF:13 x 0.75 Web:38 x 0.5 BF:18 x 0.75	0.89	0.94	0.93	0.68	0.78	0.94	23.0				
							TF:14 x 0.75 Web:38 x 0.5 BF:17 x 0.75	0.92	0.97	0.81	0.70	0.81	0.97	23.0				
							TF:14 x 0.75 Web:34 x 0.5 BF:15 x 1	0.97	0.99	0.93	0.71	0.91	0.99	23.1				
							TF:14 x 0.75 Web:36 x 0.5 BF:14 x 1	0.94	0.97	0.86	0.70	0.85	0.97	23.1				
							TF:15 x 0.75 Web:36 x 0.5 BF:18 x 0.75	0.95	0.99	0.78	0.72	0.87	0.99	23.3				
							TF:13 x 0.75 Web:38 x 0.5 BF:14 x 1	0.88	0.92	0.92	0.66	0.76	0.92	23.3				
							TF:14 x 0.75 Web:38 x 0.5 BF:18 x 0.75	0.89	0.94	0.81	0.68	0.78	0.94	23.4				
							TF:15 x 0.75 Web:38 x 0.5 BF:17 x 0.75	0.92	0.97	0.73	0.70	0.81	0.97	23.4				
							TF:15 x 0.75 Web:34 x 0.5 BF:15 x 1	0.97	0.99	0.83	0.71	0.91	0.99	23.5				
							TF:14 x 0.75 Web:34 x 0.5 BF:16 x 1	0.94	0.94	0.93	0.68	0.87	0.94	23.7				
							TF:12 x 1 Web:36 x 0.5 BF:18 x 0.75	0.95	0.99	0.88	0.72	0.87	0.99	23.7				
							TF:14 x 0.75 Web:36 x 0.5 BF:15 x 1	0.91	0.93	0.86	0.67	0.81	0.93	23.7				
							TF:16 x 0.75 Web:36 x 0.5 BF:18 x 0.75	0.96	0.99	0.72	0.72	0.87	0.99	23.7				
							TF:14 x 0.75 Web:38 x 0.5 BF:14 x 1	0.88	0.92	0.80	0.66	0.76	0.92	23.7				

Other Innovative Systems

Simple for Dead, Continuous for Life (SDCL)

- Multi-span bridges using simple span wide flange beams, with simple details, made continuous when the deck is cast



Advantages for SDCL

- Ease of construction
- Eliminates the use of traditional field splices
- Flexible & economical span ratios
- Customize beams to the spans
- Simple details make steel fabrication much more competitive
 - Certified Bridge Fabricator – Simple Bridge (SBR)
 - Certified Bridge Fabricator – Intermediate Bridge (IBR)
 - Certified Bridge Fabricator – Advanced Bridge (ABR)
- Beam Weights
 - Steel W18x158 @ 60' = **9480 lbs**. Concrete MoDOT P/S Type 3 @ 60' = **23,869 lbs**.
- Shallower depth superstructure (Approach Work Savings, Hydraulics Opening)
 - Steel W18x158 @ 60' Depth = **19.7"** Concrete MoDOT Type 3 @ 60' Depth = **39"**

Manufacturer Solutions

Prefabricated & ABC Steel Bridges

Showcase of 3 Different Steel Bridges

Bridge Case Studies

Buried Steel Bridge – Big R

Modular Beam Bridge - Contech

Press-Brake Tub Girder – Valmont

The 5 C's

Cost

Convenience

Construction (ABC)

County Built

Carbon Footprint

Prefabricated Bridges

Accelerated Bridge Construction

County Built

Buried Steel Bridge - Corrugated Steel Plate – Contractor Built

VT Route 2B Bridge Replacement, St. Johnsbury, VT

Contractor: JP Sicard

Fabricator: Big R Bridge

28 day max. trail closure / 50 day road closure for all work

47'11" span x 26'9" rise Arch

Buried Steel Bridge - Corrugated Steel Plate

Buried Steel Bridge - Corrugated Steel Plate

VT Route 2B Bridge Replacement, St. Johnsbury, VT

Corrugated Steel Buried Bridges

Craig, AK
Built by Tribal Workforce

Case Studies - Buried Steel Bridge

Contractor & County Built - Innovative Foundations - Fish Passage - No Deck Joints

Corrugated Steel Animal Overpass Reduces Wildlife-Vehicle Collisions

Buried Steel Bridge Saves \$500,000 and Three Months Versus Concrete Option

Pre-Fabricated Modular Beam – County Crew Built

Seltice-Warner Bridge, White Road, Whitman County, WA

Fabricator: BigR/Contech Engineered Solutions

Contractor: Whitman County Crew

Design Engineer: Mark Storey, County Engineer

Existing Structure – 30 ft Span, 20 ft Wide

Wood with Wood Piles & Wood Backwalls

Wood Deterioration & Susceptibility to Scour

Replacement Structure Requirements

Increase Hydraulic opening – 30 ft Channel

Raise Clearance for 100 yr Flood

Gravel Roadway

Piles with Alluvium Soils / Scouring

Pre-Fabricated Modular Beam

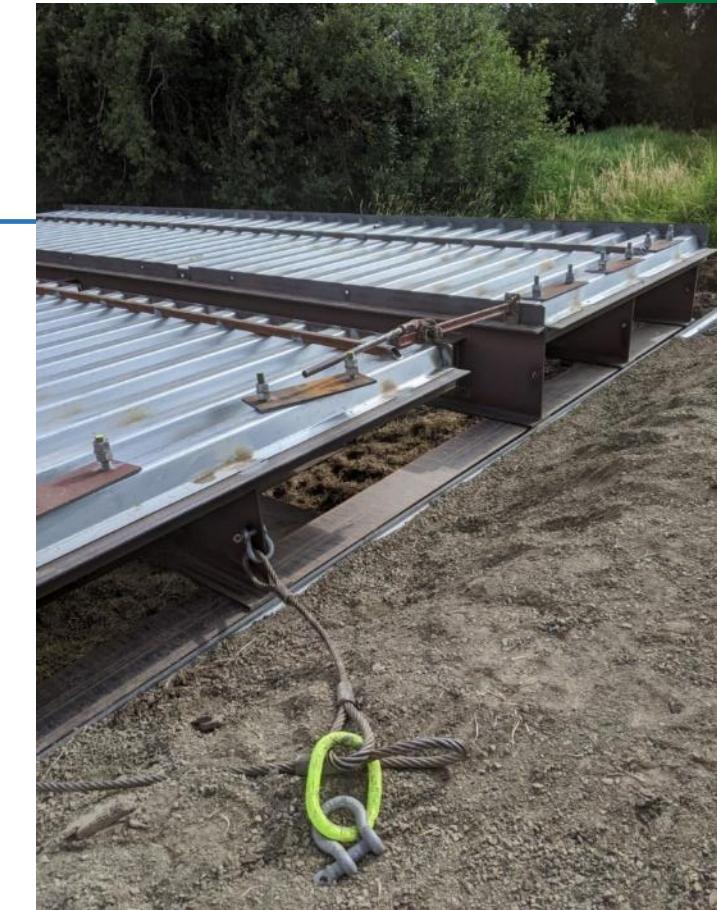
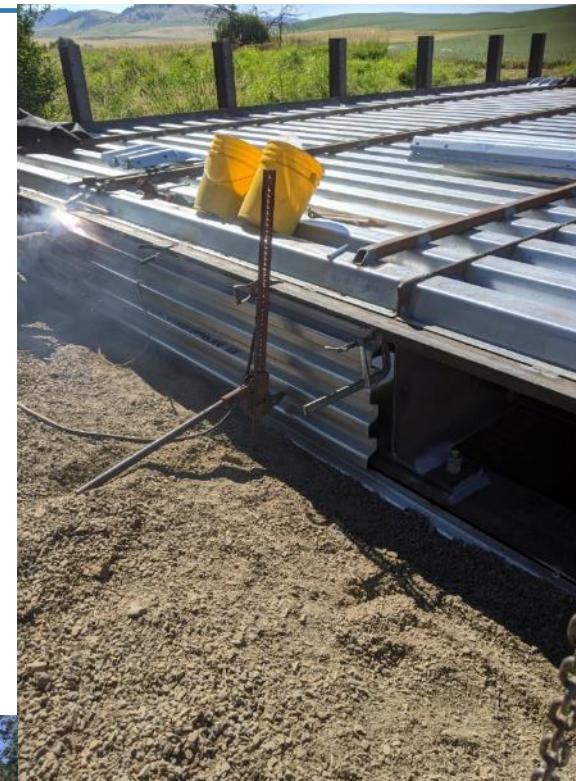
Bridge Structure

35 ft Span x 28 ft Wide

2-Girder Modules / 3 Modules

Shipped on One Truck

Fully-Assembled



CSD & Gravel

Simple Connections

Pre-Fabricated Modular Beam

SuperStructure Erection

Pre-Fabricated Modular Beam

Timing

Excavation, Stream Restoration &
Bridge Installation ~ 4 Weeks

Costs

Steel Superstructure	\$ 59,000
Labor & Equipment	\$ 70,000
Pile Foundations	\$ 20,000
Permitting	\$ 10,000
Total	\$159,000

\$ 162.25 / ft²

Concrete Superstructure Alternative \$ 82,000

Case Studies Modular Beams

Wheeler

Sevier River Bridge. Axtell, UT

Fabricator: Wheeler Bridge

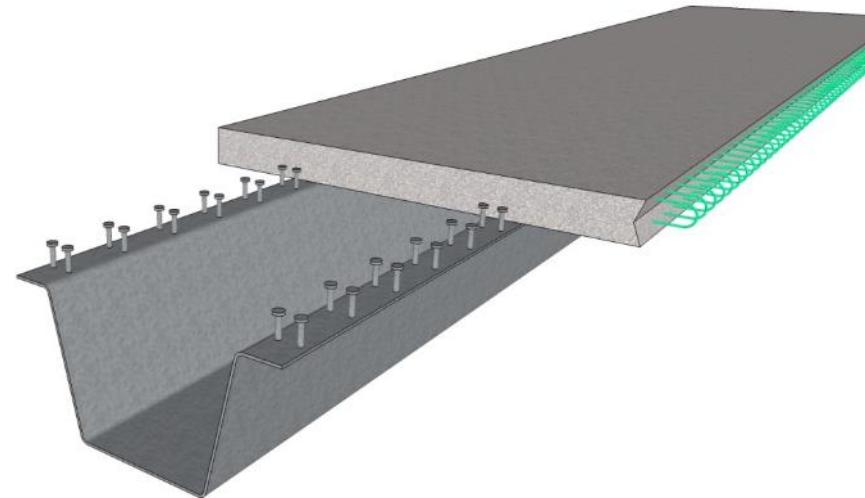
Contractor: Gerber Construction

75 ft long, 28 ft wide Modular Rolled Beam

Minneapolis, MN

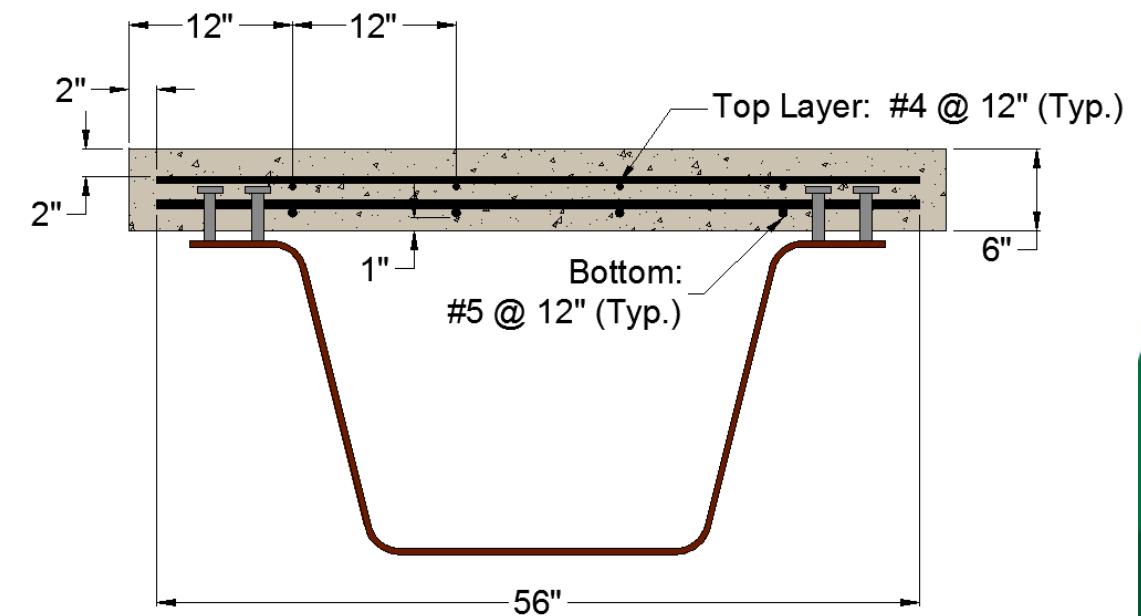
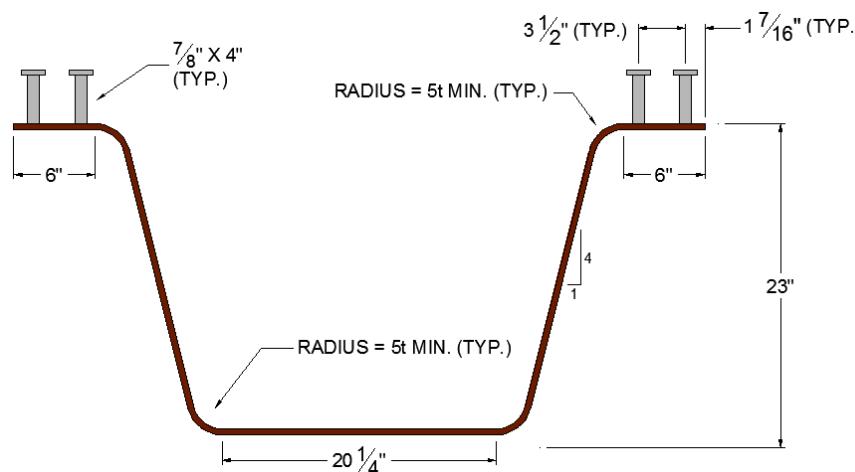
Schoepps Valley Road, Waumandee, WI

Fabricator: Wheeler


Contractor: JF Brennan

Three-Simple-Span (3 x 48 ft) with 24 ft Roadway Emergency Replacement During Winter Months

Press-Brake-Formed Steel Tub Girders



- Modular shallow trapezoidal boxes fabricated from cold-bent structural steel plate
 - Weathering steel or galvanized.
- Reduction in fabrication costs due to cold-bending versus welding of the section and mass production.
- Reduces need for stiffeners and cross frames.
- Advantages include:
 - Accelerated with precast deck (install in 1 or 2 days)
 - Modular
 - Simple to fabricate and install

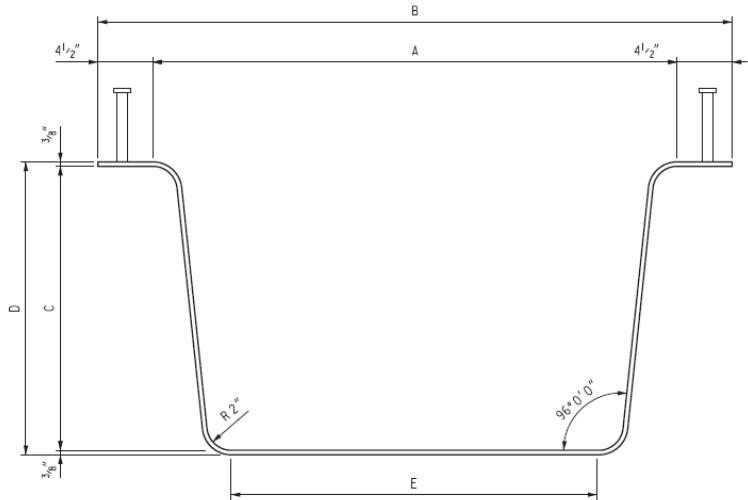
Research Started in 2012
First PBTG Bridge Built in 2015

Experimental Testing & Analytical Modeling

- Testing was conducted on composite, noncomposite, and modular flexural specimens:
 - 84" × 7/16" PL

PBFTG Applications

- *Amish Sawmill Bridge (Buchanan County, IA)*
 - \$350,000 from FHWA IBRD Program to replace the Amish Sawmill Bridge in Fairbank, Iowa.
 - Construction began in the late summer of 2015 and was completed in December 2015
 - From concept to implementation in under three years.


PBFTG Applications (cont'd)

- *Muskingum County, OH*

- PBFTG combined with SPS deck system.
 - Led to extremely shallow superstructure.
 - Served a significant advantage for hydraulic opening
- Winner of NSBA 2018 Innovative Bridge Award

Valmont U-Beams

PBFTG STANDARD TUB GIRDER CROSS SECTION

Designation	A	B	C	D	E
U12x89	43"	52"	11 1/4"	12"	32 5/8"
U18x104	43"	52"	17 1/4"	18"	31 3/8"
U24x117	43"	52"	23 1/4"	24"	30 1/8"
U30x131	43"	52"	29 1/4"	30"	28 7/8"
U33x141	45"	54"	32 1/4"	33"	30 1/4"

PBFTG Applications (cont'd)

- *Additional Applications*

Monroe County, MI

Boone County, MI

Spring Gully, TX

AASHTO 2021 Innovation Initiative

Impediments to PBTG Implementation

- Skewed Capacity
- Fatigue Performance
- Live Load Deflections
- *Live Load Distribution Factors*
 - *Interior Girder*
 - *Exterior Girder*
- *Continuous Spans*

Press-Brake Tub Girder – Contractor Built

Barron County, WS

Fabricator:

Valmont

Contractor:

Larson Construction

valmont

Existing Structure

3-Span Timber Slab

96 ft Length

Deterioration and Deficient

Replacement Structure Requirements


Two Span

104 ft Length

Increased Hydraulic Opening and Clearance

Press-Brake Tub Girder – Contractor Built

valmont

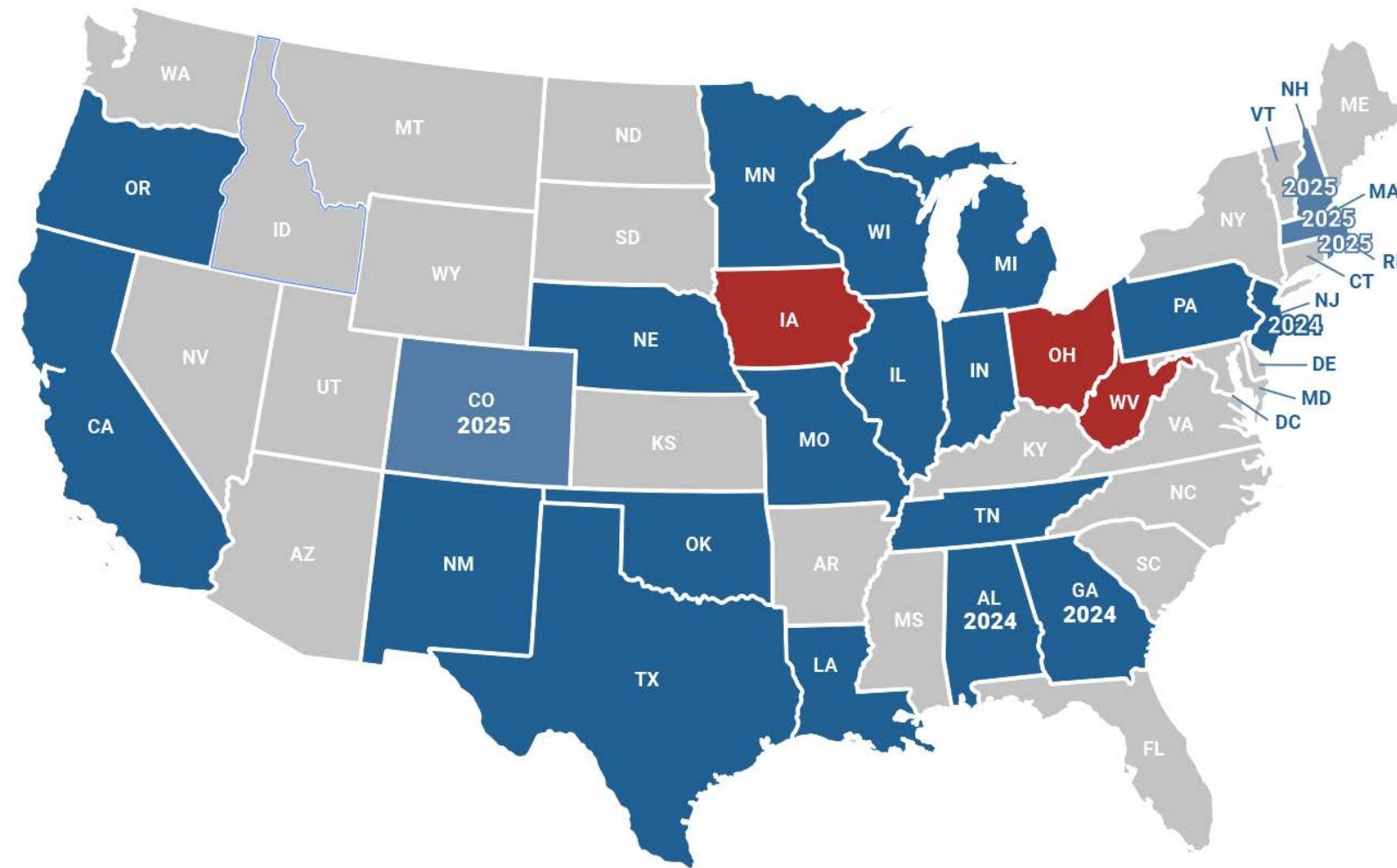
Press-Brake Tub Girder – Contractor Built

Press-Brake Tub Girder

Other Finishing Fabrication

Pre-Decked - Composite

PBTGs Pre-Decked
Closure Pours
CIP Curbs



Field Assembly - Composite

PBTGs no Deck
Precast Deck Panels
Grouted Shear Pockets
Closure Pours
CIP Curbs

PBTG Installations

- Alabama - 2024
- California
- Colorado - 2025
- Georgia - 2024
- Illinois
- Indiana
- Iowa
- Louisiana
- Massachusetts - 2025
- Michigan
- Minnesota
- Missouri
- Nebraska
- New Hampshire - 2025
- New Jersey - 2024
- New Mexico
- Ohio
- Oklahoma
- Oregon
- Pennsylvania
- Rhode Island - 2025
- Tennessee
- Texas
- West Virginia
- Wisconsin
- Manitoba, Can.
- Saskatchewan, Can.

Summary: Today's Steel Bridges

State of the Art & Innovative Designs

Durable

Speed of Construction – Accelerated Bridge Construction

Cost Effectiveness

Sustainability

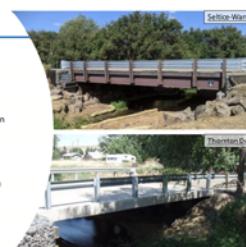
Resiliency

Considering Sustainability for Rural Bridge Design

Objectives of the Study

Evaluate the Life Cycle Sustainability of Two Functionally Equivalent Short Span Steel and Concrete Bridges
Develop Procedure to Consider Sustainability in Design Decisions

Sustainability Criteria


Equivalent Carbon Footprint
Energy Consumption
Waste Stream & Recyclability
Life Cycle Costs

Life Cycle Analysis

Superstructure
Construction
Maintenance
Demolition

Bridges Analyzed

- Steel: Seltice-Warner
Oakesdale, Washington-Whitman County
35' 8" long, 28' wide
- Concrete: Thornton Depot
Thornton, Washington-Whitman County
34' long, 32' wide

Environmental Product Declarations Emission & Energy Metrics

Material	Description	Emissions (kgCO2e/ton)	Energy Consumption (Mj/ton)
Concrete	Prestressed Concrete Component	316.3	3268
	Grout	614.2	4545
Steel	Hot Rolled Steel Shapes	1109.8	16880
	Plates	1569.4	20801
	Steel Tubes	2168.2	25611
	Studs	215.0	27208
	Guardrail*	2156.0	27208
Other	#7 Gravel (1/2" x #4)	1.41	308

Superstructure Emissions & Energy Consumption

Steel Seltice-Warner	
Bridge Component	Weight (tons)
Steel	1,200
Concrete	1,200
Other	1,200
Sub-Total Superstructure	3,600
Sub-Total Superstructure	3,600
Concrete Thornton Depot	
Bridge Component	Weight (tons)
Steel	1,200
Concrete	1,200
Other	1,200
Sub-Total Superstructure	3,600
Sub-Total Superstructure	3,600

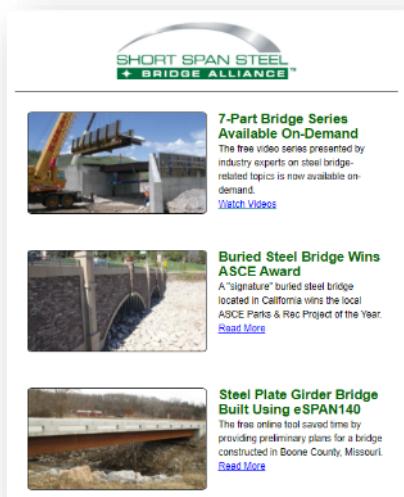
Crossover Between Resiliency & Sustainability

Resiliency

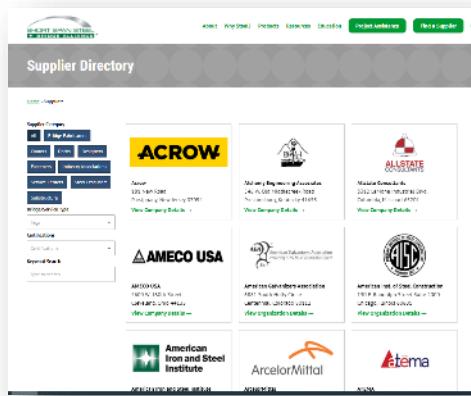
- Repairable ✓
- Redundant ✓
- Flexible ✓
- Adaptable ✓
- Resistant to Hazards ✓
- Fast Restoration ✓

Sustainability

- Recyclable
- Reduced Material Consumption
- Energy Efficient Construction
- Low Environmental Impact


- Steel is North America's #1 Recycled Material
- High Strength to Weight Ratio
- Optimal Weight while Maintaining Strength, Durability & Safety
- Recycled Steel Conserves Energy, enough to power 18 million homes
- Steel's Energy Use Reduced 33% Since 1990

• Greenhouse Gas Emissions Reduced by 45% since 1975


www.ShortSpanSteelBridges.org

5 Ways to Keep Learning About Steel Bridges

1. Subscribe to the Weekly Newsletter

2. Find a Supplier

3. Design a Bridge in 5-Minutes

4. Receive Free Project Assistance

5. Schedule a Workshop/Webinar

www.ShortSpanSteelBridges.org

Questions? Dan Snyder, Director, SSSBA, dsnyder@steel.org, (301) 367-6179

Website: ShortSpanSteelBridges.org

Twitter: @ShortSpanSteel

Facebook: Short Span Steel Bridge Alliance

Download Presentation Slides

www.ShortSpanSteelBridges.org